

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 1 of 42

 1
 2
 3
 4
 5
 6
 7

 8

 9

Marlin – File Formats Specification 10
Version 1.1.3 11
Final 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
Source Marlin Developer Community
Date October 22, 2010
 28
 29

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 2 of 42

Notice 30

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO REPRESENTATION OR 31
WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE 32
COMPLETENESS, ACCURACY, OR APPLICABILITY OF ANY 33
INFORMATION CONTAINED IN THIS DOCUMENT. THE MARLIN 34
DEVELOPER COMMUNITY (“MDC”) ON BEHALF OF ITSELF AND ITS 35
PARTICIPANTS (COLLECTIVELY, THE "PARTIES") DISCLAIM ALL 36
LIABILITY OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, 37
ARISING OR RESULTING FROM THE RELIANCE OR USE BY ANY PARTY 38
OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. THE 39
PARTIES COLLECTIVELY AND INDIVIDUALLY MAKE NO 40
REPRESENTATIONS CONCERNING THE APPLICABILITY OF ANY 41
PATENT, COPYRIGHT (OTHER THAN THE COPYRIGHT TO THE 42
DOCUMENT DESCRIBED BELOW) OR OTHER PROPRIETARY RIGHT OF 43
THIS DOCUMENT OR ITS USE, AND THE RECEIPT OR ANY USE OF THIS 44
DOCUMENT OR ITS CONTENTS DOES NOT IN ANY WAY CREATE BY 45
IMPLICATION, ESTOPPEL OR OTHERWISE, ANY LICENSE OR RIGHT TO 46
OR UNDER ANY PATENT, COPYRIGHT, TRADEMARK OR TRADE 47
SECRET RIGHTS WHICH ARE OR MAY BE ASSOCIATED WITH THE 48
IDEAS, TECHNIQUES, CONCEPTS OR EXPRESSIONS CONTAINED 49
HEREIN. 50

Use of this document is subject to the agreement executed between you and 51
the Parties, if any. 52

Any copyright notices shall not be removed, varied, or denigrated in any 53
manner. 54

Copyright © 2003 - 2010 by MDC, 415-112 North Mary Avenue #383 Sunnyvale, CA 55
94085, USA. All rights reserved. Third-party brands and names are the property of 56
their respective owners. 57

Intellectual Property 58

A commercial implementation of this specification requires a license from the Marlin 59
Trust Management Organization. 60

Contact Information 61

Feedback on this specification should be addressed to: editor@marlin-62
community.com

Contact information for the Marlin Trust Management Organization can be found 64
at:

 63

http://www.marlin-trust.com/ 65
 66

67

mailto:editor@marlin-community.com�
mailto:editor@marlin-community.com�
http://www.marlin-trust.com/�

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 3 of 42

 68

CONTENTS 69

1 INTRODUCTION ... 5 70
1.1 DOCUMENT ORGANIZATION ... 5 71
1.2 CONFORMANCE CONVENTIONS .. 5 72
1.3 NAMES AND IDENTIFIERS... 5 73
1.4 ABBREVIATIONS ... 5 74
1.5 TERMS AND DEFINITIONS .. 5 75
1.6 REFERENCES .. 6 76

1.6.1 Normative References .. 6 77
1.6.2 Informative References .. 7 78

2 FILE FORMAT FOR MARLIN CONTENT ... 9 79
2.1 FILE FORMAT FOR MARLIN BROADBAND CONTENT ... 9 80

2.1.1 File Identification ... 9 81
2.1.2 Protection Scheme Information ... 9 82

2.1.2.1 ISMA Salting Key Box .. 10 83
2.1.2.2 Octopus ID Box ... 10 84
2.1.2.3 Octopus Bundle Box .. 11 85

2.1.3 Additions to the ISO Base Media File Format ... 11 86
2.1.3.1 Metadata structure ... 12 87
2.1.3.2 Signed metadata ... 14 88

2.1.4 Metadata Items .. 16 89
2.1.5 Media Format Profiles ... 18 90

2.2 MARLIN DRM CONTENT FORMAT (MDCF) ... 20 91
2.2.1 Approach ... 20 92
2.2.2 Marlin DRM Content Format (MDCF) for Discrete Media 20 93
2.2.3 MDCF MIME Type... 20 94
2.2.4 MDCF File Format ... 21 95

2.2.4.1 Constraints on ISO Format .. 21 96
2.2.4.2 File Branding .. 21 97

2.2.5 Overall structure .. 22 98
2.2.5.1 Marlin DRM Container Box ... 23 99
2.2.5.2 Marlin Discrete Media Headers Box .. 23 100
2.2.5.3 Content Object Box ... 27 101
2.2.5.4 Extensions ... 28 102
2.2.5.5 Marlin DRM Information Box .. 29 103

2.2.6 Multiple Marlin DRM Containers ... 30 104
2.2.7 Additional Extensions .. 30 105

2.3 FILE FORMAT USING IPMP FOR MARLIN BROADBAND CONTENT 30 106
2.3.1 Overall Designs .. 30 107
2.3.2 Protected Stream Support ... 32 108

2.3.2.1 IPMP System Type ... 32 109
2.3.2.2 Protection Information in IPMP_data ... 32 110
2.3.2.3 Security Information Descriptor Box ... 33 111
2.3.2.4 Scheme Type Box .. 33 112
2.3.2.5 Security Scheme Information Box.. 34 113
2.3.2.6 Octopus ID Box ... 36 114
2.3.2.7 Marlin Security Attributes Box .. 36 115
2.3.2.8 Marlin Stream Type Box .. 36 116
2.3.2.9 Marlin Signed Attributes Box .. 37 117
2.3.2.10 Marlin Rights URL Box .. 37 118
2.3.2.11 Marlin Attribute Signature Box ... 39 119
2.3.2.12 Marlin Certificate Box .. 39 120
2.3.2.13 Marlin HMAC Box .. 40 121
2.3.2.14 Octopus Bundle Box .. 40 122
2.3.2.15 Marlin Group Key Box .. 41 123
2.3.2.16 License Information Box ... 42 124

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 4 of 42

2.3.3 Stream Encryption ... 42 125
2.3.3.1 AES with 128-bit key in CBC mode ... 42 126

 127

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 5 of 42

1 Introduction 128

1.1 Document Organization 129
This document covers the media file formats utilized by implementations of the Marlin 130
Core System Specification [MCS]. It is organized as follows: 131

• (this) introduction, including abbreviations, definitions and references 132
• Content File Formats for Broadband and Mobile delivery systems 133

1.2 Conformance Conventions 134
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 135
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this 136
specification are to be interpreted as described in IETF RFC 2119 [RFC2119]. 137
 138
These capitalized key words are used to unambiguously specify requirements and 139
behavior that affect the interoperability and security of implementations. When these 140
key words are not capitalized they are meant in their natural-language sense. 141
 142
All elements of this specification are considered Normative unless specifically 143
marked Informative. All Normative Elements are Mandatory to implement, except 144
where such an element is specifically marked OPTIONAL. Finally, where Normative 145
elements are described as OPTIONAL, they MAY be omitted from an 146
implementation, but when implemented, they MUST be implemented as described. 147

1.3 Names and Identifiers 148
This specification uses Uniform Resource Identifiers [RFC2396] to identify various 149
entities including resources, algorithms, policies, attributes and other application 150
specific objects. This specification relies upon the name and identification techniques 151
defined in [MCS] § 1.3. 152

1.4 Abbreviations 153
AES Advanced Encryption Standard
AES-CTR-128 AES Counter mode with 128-bit key
BKB Broadcast Key Block
CBC Cipher Block Chaining
CCI Copy Control Information
CPRM Content Protection for Recordable Media
CTR Counter
DCF DRM Content Format
DLNA Digital Living Network Alliance
HBES Hierarchical Hash-Chain Broadcast Encryption Scheme
ISO International Organization for Standardization
MAC Message Authentication Code
MDCF Marlin DRM Content Format
OMA Open Mobile Alliance
XML Extensible Markup Language
 155

1.5 Terms and Definitions 156
Marlin Content Media packaged into a Marlin File Format Container
Marlin Content The File Format and Media Codec Profile that Marlin

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 6 of 42

Format Content is contained in.
Content Key The symmetric key that encrypts the payload of the

content
Starfish The Marlin broadcast encryption scheme based on

HBES (Hierarchical Hash-Chain Broadcast Encryption
Scheme)

 157

1.6 References 158

1.6.1 Normative References 159
 160
[AES] NIST FIPS 197: Advanced Encryption Standard (AES). November

2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[AES-MODES] Recommendation of Block Cipher Modes of Operation. NIST. NIST Special

Publication 800-38A.
http://csrc.nist.gov/CryptoToolkit/modes/800-
38_Series_Publications/SP800-38A.pdf

[AVCFF] “Information technology – Coding of audio-visual objects – Part 15: AVC
File Format”, ISO/IEC 14496-15.

[DLNA1] Digital Living Network Alliance, “Home Networked Device Interoperability
Guidelines”, Version: 1.0, June 2, 2004.

[DLNAOMF1] Digital Living Network Alliance, “Home Networked Device Interoperability
Guidelines v.1.0 Addendum, Optional Media Format Guidelines”, v1.0,

[DLNA1ERR] Digital Living Network Alliance, “Home Networked Device Interoperability
Guidelines Version 1.0 Errata”, October 18, 2004.

[hmacwithsha1] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. IETF RFC 2104. February
1997. http://www.ietf.org/rfc/rfc2104.txt

[ISMACryp] “ISMA Encryption and Authentication Specification”, version 1.0, February
2004.

[ISO14496-12] Information technology — Coding of audio-visual objects – Part 12: ISO
Base Media File Format”. ISO (International Organization for
Standardization). ISO/IEC 14496-12, 2003

[ISOMFF] “Information technology – Coding of audio-visual objects – Part 12: ISO
base media file format”, second edition, ISO/IEC 14496-12:2005(E), 2005-
04-01.

[MCS] Marlin - Core System Specification version 1.0. December 2006.
[MIME] N. Freed & N. Borenstein. Multipurpose Internet Mail Extensions (MIME)

Part One: Format of Internet Message Bodies. IETF RFC 2045. November
1996. http://www.ietf.org/rfc/rfc2045.txt

[MP4S] “Information technology – Coding of audio-visual objects – Part1:
Systems”, ISO/IEC 14496-1:2004.

[MP4FF] “Information technology – Coding of Audio, Picture, Multimedia and
Hypermedia Information – Part.14: MP4 file format”, ISO/IEC 14496-
14:2003.

[MURIT] “URI Templates for Marlin”, Version 1.0, Sept 10 2007.
[OMADCF] DRM Content Format V2.0, Candidate version 2.0. March

29, 2005. Open Mobile Alliance.
OMA-DRM-DCF-V2_0-0-20050329-C

[RFC1738] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators
(URL). IETF RFC 1738. December 1994.
http://www.ietf.org/rfc/rfc1738.txt

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf�
http://csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38A.pdf�
http://csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38A.pdf�
http://www.ietf.org/rfc/rfc2104.txt�
http://www.ietf.org/rfc/rfc2104.txt�
http://www.ietf.org/rfc/rfc2104.txt�
http://www.ietf.org/rfc/rfc2045.txt�
http://www.ietf.org/rfc/rfc1738.txt�

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 7 of 42

[RFC2104] H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message
Authentication, IETF RFC 2104, February 1997.
http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
IETF RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt.

[RFC2396] T. Berners-Lee, R. Fielding, L. Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. IETF RFC 2396. August 1998.
http://www.ietf.org/rfc/rfc2396.txt

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, eds. Hypertext Transfer Protocol – HTTP/1.1. IETF RFC
2616
http://www.ietf.org/rfc/rfc2616.txt

[RFC2630] Cryptographic Message Syntax. Network Working Group. R. Housley,
Request for Comments: 2630. June 1999.
http://www.ietf.org/rfc/rfc2630.txt

[RFC3986] Uniform Resource Identifier (URI): Generic Syntax. Network Working
Group. T. Berners-Lee, Request for Comments: 3986. January 2005
http://www.ietf.org/rfc/rfc3986.txt

[RFC3394] J. Schaad, R. Housley. Advanced Encryption Standard (AES) Key Wrap
Algorithm. IETF RFC 3394. September 2002.
http://www.ietf.org/rfc/rfc3394.txt

[RSA-1_5] B. Kaliski, J. Staddon. PKCS #1: RSA Cryptography Specifications Version
2.0. IETF RFC2437. October 1998.
http://www.ietf.org/rfc/rfc2437.txt

[SCTE52] ANSI/STCE 52: “Data Encryption Standard – Cipher Block Chaining Packet
Encryption
Specification”. http://www.scte.org/documents/pdf/ANSISCTE522003DVS0
42.pdf

[SHA1] FIPS PUB 180-1. Secure Hash Standard. U.S. Department of
Commerce/National Institute of Standards and Technology.
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[SHA256] FIPS PUB 180-2. Secure Hash Standard. U.S. Department of
Commerce/National Institute of Standards and Technology.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[URN] R. Moats.. URN Syntax. IETF RFC 2141. May 1997.
http://www.ietf.org/rfc/rfc2141.txt
L. Daigle, D. van Gulik, R. Iannella, P. Falstrom.. URN Namespace
Definition Mechanisms. IETF RFC 2611. June 1999.
http://www.ietf.org/rfc/rfc2611.txt

[X509Cor1] ITU-T Recommendation X.509 (2000) Corrigendum 1:
Information technology - Open Systems Interconnection -
The Directory: Public-key and attribute certificate
frameworks Technical Corrigendum 1

 161

1.6.2 Informative References 162
 163
[3GPP] 3rd Generation Partnership Project, “Transparent

end-to-end packet switched streaming service (PSS);
3GPP file format (3GP) (Release6)”, 3GPP TS 26.244
V6.2.0, 2004-12.

[PKIX] R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509

http://www.ietf.org/rfc/rfc2104.txt�
http://www.ietf.org/rfc/rfc2119.txt�
http://www.ietf.org/rfc/rfc2396.txt�
http://www.ietf.org/rfc/rfc2616.txt�
http://www.ietf.org/rfc/rfc2630.txt�
http://www.ietf.org/rfc/rfc3394.txt�
http://www.ietf.org/rfc/rfc2437.txt�
http://www.scte.org/documents/pdf/ANSISCTE522003DVS042.pdf�
http://www.scte.org/documents/pdf/ANSISCTE522003DVS042.pdf�
http://www.itl.nist.gov/fipspubs/fip180-1.htm�
http://www.ietf.org/rfc/rfc2141.txt�
http://www.ietf.org/rfc/rfc2611.txt�

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 8 of 42

Public Key Infrastructure Certificate and CRL Profile. IETF
RFC 3280. April 2002.
http://www.ietf.org/rfc/rfc3280.txt

[URL] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform
Resource Locators (URL). IETF RFC 1738. December
1994.
http://www.ietf.org/rfc/rfc1738.txt

[X509] ITU-T Recommendation X.509 (1997 E): Information
Technology - Open Systems Interconnection - The
Directory: Authentication Framework, June 1997.

http://www.ietf.org/rfc/rfc3280.txt�
http://www.ietf.org/rfc/rfc1738.txt�

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 9 of 42

2 File Format for Marlin Content 164
In order to ensure at least a minimal set of interoperability between implementations 165
of core system specifications, Marlin specifies a set of content file format profiles in 166
terms of containers, media encryption mechanisms, codecs profiles, and metadata 167
structures. 168

 169
The Marlin Content Formats SHALL be supported by all devices implementing the 170
core system specifications, providing that the device capability supports the media 171
profile 172
 173

2.1 File Format for Marlin Broadband Content 174
Marlin Broadband content SHALL use the MP4 file format defined in [MP4FF] for 175
protected and non-protected media. In case of the AVC codec used, the [AVCFF] is 176
also referred to. For protected content, the scheme signaling method defined in the 177
[ISOMFF] and adopted by the [ISMACryp] is used. 178

 179
The encryption of the content SHALL use AES Counter-Mode encryption, with 128-180
bit key size (AES-CTR-128) following the [ISMACryp] specification. For the 181
encryption scheme, boxes defined in [ISMACryp] SHALL be used within the 182
Protection Scheme Information Box (‘sinf’). 183
 184
In addition, new boxes in the sinf are defined in order to carry Octopus related 185
information such as Octopus content identifier. 186

 187
While Octopus allows a license to be delivered separately from the content file, it can 188
also be embedded in the content file. A box definition to store the license is specified 189
in this document. Whenever possible, licenses SHOULD be stored in this box. 190

 191
The Marlin Broadband content format adopts DLNA media profiles as baseline. The 192
referenced DLNA media profiles adopt the ISO Base Media File Format. The 193
remainder of this document specifies extensions to this profile. 194

 195
This section addresses the following topics: 196

• File identification for the Marlin broadband content files. 197
• Specifications for protection of the Marlin broadband content files. 198
• Extensions to the ISO Base Media File Format for metadata in the Mar199

lin broadband content files. 200
• List of metadata items for the Marlin broadband content files. 201
• DLNA media profiles referred to by this specification. 202

 203

2.1.1 File Identification 204
The brand ‘mln1’ SHALL be used to indicate conformance with this specification in a 205
file. Whenever possible, the brand ‘mln1’ SHOULD be used as a major-brand in a 206
Marlin Broadband content file. 207

2.1.2 Protection Scheme Information 208
The Marlin Broadband file format defines new boxes in the Protection Scheme 209
Information Box (‘sinf) which is identified by the scheme-type value ‘iAEC’ in the 210
Scheme Type Box (‘schm’) as defined in the [ISMACryp]. 211

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 10 of 42

 212
These boxes SHALL be used to carry the Marlin Octopus specific information and 213
encryption parameters defined in the [ISMACryp]. The encryption scheme for the 214
protected Marlin Broadband content files SHALL be the default encryption scheme of 215
the [ISMACryp], i.e. AES-CTR-128. The structure of the Marlin Broadband Profile 216
‘sinf’ box is based on the one specified in [ISMACryp] and is shown in Table 2-1. 217

 218

Box Defined
by…

Description

sinf MPEG-4 Container for protection information
 frma MPEG-4 The 4CC of the original un-protected

sample description
 schm MPEG-4 Protection scheme type
 schi MPEG-4 Container of protection information

interpreted by the scheme.
 iKMS ISMA ISMA KMS Box
 iSFM ISMA ISMA Sample Format Box
 iSLT Marlin BP Salting key needed for AES-CTR-128

defined in [ISMACryp].
 8id Marlin BP Octopus ID
 8bdl Marlin BP Octopus Bundle (optional)

Table 2-1 Structure of Protection Scheme Information Box (‘sinf’) 219

The ISMA KMS Box enables interoperability only if participants use the same Key 220
Management System. Therefore, the contents of the ISMA KMS Box SHOULD 221
contain the following URI to indicate the Marlin KMS: 222
 223

urn:marlin:ismacryp:kms-id:0 224

2.1.2.1 ISMA Salting Key Box 225

2.1.2.1.1 Definition 226
Box Type: ‘iSLT’ 227
Container: Scheme Information Box (‘schi’) 228
Mandatory: Yes 229
Quantity: Exactly one 230

2.1.2.1.2 Syntax 231
aligned(8) class ISMASaltingKeyBox extends Box (‘iSLT’) { 232
 bit (64) saltValue; 233
} 234

 235

2.1.2.1.3 Semantics 236
saltValue is a binary data that specifies salting key used in the default 237
encryption scheme defined in the [ISMACryp], i.e. AES-CTR-128. 238

 239

2.1.2.2 Octopus ID Box 240

2.1.2.2.1 Definition 241

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 11 of 42

Box Type: ‘8id ’ 242
Container: Scheme Information Box (‘schi’) 243
Mandatory: Yes 244
Quantity: Exactly one 245

 246

2.1.2.2.2 Syntax 247
aligned(8) class OctopusIdBox extends Box (‘8id ’) { 248
 string id; 249
} 250

2.1.2.2.3 Semantics 251
id is a null-terminated UTF-8 characters that indicates Octopus 252
Content Object Identifier. 253

 254

2.1.2.3 Octopus Bundle Box 255

2.1.2.3.1 Definition 256
Box Type: ‘8bdl’ 257
Container: Scheme Information Box (‘schi’) and movie level user data 258
box 259
Mandatory: No 260
Quantity: Zero or more 261

 262

2.1.2.3.2 Syntax 263
aligned(8) class OctopusBundleBox extends Box (‘8bdl’) { 264
 unsigned int(32) encoding; 265
 unsigned int(32) encoding_version; 266
 bit(8) bundle_data[]; 267
} 268

 269

2.1.2.3.3 Semantics 270
encoding is four-character code that indicates encoding type of the 271
bundle_data field. The values defined in this specification are 272
indicated in Table 2-2. 273
encoding_version is an integer that indicates version of the encoding 274
type identified by the encoding field in this box. The values defined in 275
this specification are indicated in Table 2-2. 276
bundle_data is data that represents the Octopus objects. 277

 278
encoding encoding_version Description
‘xml ‘ 0x00000000 XML encoding used for this version of the Marlin

Broadband file format
Table 2-2 Encoding and encoding version options 279

2.1.3 Additions to the ISO Base Media File Format 280
This section specifies the generic metadata format and its protection scheme. 281
 282

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 12 of 42

The metadata structure is for the generic metadata including text, URL and 283
compressed/uncompressed binary data. This metadata structure conforms to the 284
meta box defined in the [ISOMFF] and specifies contained boxes within the meta box 285
as allowed by the [ISOMFF]. The metadata structure specified is identified by a 286
handler_type as defined in the [ISOMFF]. The handler_type is declared in this 287
chapter. 288
 289
In order to support signing the metadata, some additional boxes are specified. 290

2.1.3.1 Metadata structure 291

2.1.3.1.1 Handler type 292
The handler_type for the Handler Box in the Meta box SHALL be set to ‘mtdb’. 293

 294

2.1.3.1.2 Metadata Item Directory Box 295
The metadata item directory box provides a directory of metadata in the containing 296
file, movie or track. This box consists of metadata items which directly store 297
metadata inside. Unless the primary item box occurs within the containing meta box, 298
this box MUST exist.. 299
 300
The definition, syntax and semantics are specified below. 301
 302

Box Type : ‘idir’ 303
Container : Meta Box (‘meta’) 304
Mandatory : No 305
Quantity : zero or exactly one 306
 307
aligned(8) class MetaItemDirectoryBox () extends Box (‘idir’) { 308
 Box metadata_items[]; 309
} 310
 311

2.1.3.1.3 Metadata Item Box 312
Each metadata item is stored in a metadata item box and listed in a metadata item 313
directory box. The metadata item box consists of a collection of entries (or boxes). 314
The Item Data Entry specified in a following clause is a mandatory entry of this box 315
and stores metadata body. Optional entries MAY be located in this box to add 316
information or functionalities for the metadata. The item tag value (or box type) of the 317
metadata item box indicates a type of the metadata stored 318
 319
The definition, syntax and semantics of the Metadata item box are specified below. 320

 321
Box Type : item_tag 322
Container : Metadata Item Directory Box (‘idir’) 323
Mandatory : Yes 324
Quantity : One or more (zero or more per each item_tag) 325
 326
aligned(8) class MetadataItemBox () extends Box (item_tag) { 327
 ItemReferenceEntry ref_entry; // optional 328
 ItemLanguageEntry lang_entry; // optional 329
 ItemDataEntry data_entry; 330
} 331

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 13 of 42

 332

2.1.3.1.4 Item Data Entry 333
The item data entry stores actual metadata within a metadata item box. There 334
SHALL be exactly one item data entry in a metadata item box. The type of the 335
metadata and its structure are identified by the item tag (or box type) of the 336
containing metadata item box. 337
 338
The definition, syntax and semantics are specified below. 339

 340
Box Type : ‘idat’ 341
Container : Metadata Item Box 342
Mandatory : Yes 343
Quantity : Exactly one 344
 345
aligned(8) class ItemDataEntry () extends FullBox(‘idat’, version = 0, flags) { 346
 unsigned int(16) item_ID; 347
 bit(8) data[]; 348
} 349

 350
item_ID is an arbitrary integer ‘name’ for this resource which can be used to 351
refer to it. The value SHALL be unique within the container meta box (not the 352
Metadata Item Directory box). 353
data is a byte stream storing metadata. The structure in this field depends on 354
item tag (or box type) of the container Metadata Item Box. 355
 356

2.1.3.1.5 Item Reference Entry 357
The item reference entry provides a reference from the containing metadata item box 358
to another metadata item within a meta box. The item IDs declared in item reference 359
entries SHALL be used as the references. 360
The definition, syntax and semantics are specified below. 361
 362

Box Type : ‘iref’ 363
Container : Metadata Item Box 364
Mandatory : No 365
Quantity : Zero or exactly one 366
 367
aligned(8) class ItemReferenceEntry () extends FullBox(‘iref’, version = 0, 368
flags) { 369
 unsigned int(16) entry_count; 370
 for (i = 0; i < entry_count; i++) { 371

unsigned int(16) item_ID; 372
 } 373
} 374

 375
entry_count is an integer that gives the number of the entries of item_ID. 376
item_ID is an integer that indicates the ID of the item which is referenced to 377
by the containing item. 378
 379

2.1.3.1.6 Item Language Entry 380

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 14 of 42

The item language entry provides the language code for textual metadata stored in 381
the containing metadata item box. This entry is meaningful only for the textual 382
metadata item. 383
The definition, syntax and semantics are specified below. 384
 385

Box Type : ‘ilng’ 386
Container : Metadata Item Box 387
Mandatory : No 388
Quantity : Zero or exactly one 389
 390
aligned(8) class ItemLanguageEntry () extends Box(‘iref’) { 391
 const bit(1) pad = 0; 392
 unsigned int(5)[3] language; // ISO-639-2/T 393
language code 394
} 395

 396
language declares the language code for the text stored in the ItemDataEntry 397
within a Metadata Item box where this entry is. See ISO 639-2/T for the set of 398
three character codes. Each character is packed as the difference between its 399
ASCII value and 0x60. The code is confined to being three lower-case letters, 400
so these values are strictly positive. 401
 402

2.1.3.2 Signed metadata 403
In order to support the feature of verifying the integrity of metadata, the signing 404
scheme for metadata specified in this section SHALL be used. The boxes are stored 405
in the protection scheme information box. As defined in the [ISOMFF], the item 406
protection box works as a container of the protection scheme information box(es) and 407
the item information box describes association between the protection scheme 408
information and protected items. 409

 410

2.1.3.2.1 Scheme Type 411
The scheme signaling that uses a scheme type box (‘schm’) and a scheme 412
information box (‘schi’) is used in the protection scheme information box (‘sinf’). The 413
value of the scheme_type in the scheme type box SHALL be ‘smtd’ for this signing 414
scheme. The scheme type SHALL occur only in the protection scheme information 415
box within a meta box. 416

 417

2.1.3.2.2 Scheme Information 418
The scheme information box (‘schi’) identified by the scheme_type declared in the 419
section 2.1.3.2.1 stores the following boxes. 420

2.1.3.2.3 Metadata Signature Box 421
The metadata signature box stores signature of metadata items and indicates 422
the signing scheme used for the signature. The signature targets are 423
metadata items which item IDs are associated with the container protection 424
scheme information box (‘sinf’) by the item information box (‘iinf’). The signed 425
metadata item boxes are concatenated in numeric order of their item IDs and 426
signed together. 427
The definition, syntax and semantics are specified below. 428
 429

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 15 of 42

Box Type : ‘msig’ 430
Container : Scheme Information Box (‘schi’) 431
Mandatory : Yes 432
Quantity : Exactly one 433
 434
aligned(8) class MetadataSignatureBox () extends FullBox(‘msig’, 435
version = 0, flags) { 436
 unsigned int(32) signing_scheme; 437
 bit(8) signature[]; 438
} 439
 440
signing_scheme is an integer that indicates the scheme of signing 441
metadata. The following values are defined in this document. 442
 - ‘RSA1’ : RSA-SHA1[RSA-1_5] for public key signatures. 443
signature is a signature value generated according to the scheme. 444

 445
Certificate Path Box 446
The certificate path box contains an ordered list of X.509 certificates. The 447
certificates are used to verify signature in the metadata signature box. 448
Therefore, this box occurs only when the signing scheme specified in the 449
metadata signature box requires the certificates. For example, RSA signature 450
requires certificates. On the other hand, HMAC signature does not. 451
 452

Box Type : ‘crtp’ 453
Container : Scheme Information Box (‘schi’) 454
Mandatory : No 455
Quantity : Zero or exactly one 456
 457
aligned(8) class CertificatePathBox () extends FullBox(‘crtp’, version = 458
0, flags) { 459
 bit(8) x509certpath[]; 460
} 461
 462
x509certpath is an ordered list of X.509 certificates packaged in a 463
PKIPath for the signature in the metadata signature box. 464

 465
Metadata item for signed metadata 466
To prevent replacement of signature and metadata, Octopus content ID(s) for 467
track(s) associated with the signed metadata MUST be included in the 468
metadata items to be signed. A metadata item to indicate which Octopus 469
content ID(s) is/are included in signed metadata is specified in this clause. 470
The metadata item contains a list of track IDs. This metadata item box is 471
replaced with Octopus ID boxes in tracks identified by the track IDs and 472
signed together with other metadata items to be signed. The order of replaced 473
Octopus ID boxes shall be the same as the order of track IDs in the list. 474
 475
Item Tag Data

type
Description

Octopus content
ID references

‘OIDR‘ Binary This item contains a list of track IDs. This
item is only for the signed metadata
scheme specified in this document.
Octopus ID boxes stored in tracks
indicated by the list are signed together
with other metadata items.

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 16 of 42

 476
The syntax and semantics of the item data entry for this metadata item is as 477
follows. 478
 479

aligned(8) class OctopusContentIDReferencesItemDataEntry () 480
extends ItemDataEntry(‘idat’, version = 0, flags, item_ID) { 481
 unsigned int(32) entry_count; 482

for (i = 0; i < entry_count; i++) { 483
 unsigned int(32) track_ID; 484

} 485
} 486

 487
entry_count is an integer that gives the number of the entries of track_IDs. 488
When the value of this field is set to 0, the entry refers to the containing track 489
when this entry is in the track-level meta box or all tracks in the containing 490
movie or file when this entry is in the movie-level or file-level meta box. 491
track_ID is an integer that indicates the referenced track by this entry. 492
 493

2.1.4 Metadata Items 494
The list below is examples of metadata items, which could be used by an audio 495
distribution service. 496
Multiple instances of metadata item with the same item tag are allowed for some 497
items. Otherwise, there SHALL be only one instance of the metadata item in a 498
metadata item directory box. One item and other items referring to the item by the 499
item reference box may form a group. In the following list, still image metadata and 500
its associated metadata typically form a group. See the list below for which item may 501
have multiple instances or be a member of a group. 502
When an item stores textual metadata or a string, it is encoded with UTF-8 or UTF-16 503
characters. It’s not a null-terminated string. If UTF-16 is used, the string shall start 504
with the BYTE ORDER MARK (0xFEFF), to distinguish it from a UTF-8 string. This 505
mark does not form part of the final string. 506
When an item stores URL metadata, it is a string encoded with UTF-8 characters. It’s 507
not a null-terminated string. 508
The JPEG metadata items in the following table conform to codec related guidelines 509
of the media profile, JPEG_SM, of DLNA guidelines [DLNA1]. 510

 511
Item Tag Data

type
Description

Album Product ID ‘APID‘ Text This item contains the product ID of an
album. This ID may arbitrarily be
assigned and is managed by a content
holder.

Album Title ‘TALB‘ Text This item contains an album title.
Album Main Artist ‘AART‘ Text This item contains the main artist of an

album.
Track Number ‘TRKN‘ Text This item contains a track number. A

track number is a sequence number that
indicates a track’s position in an album.
To express a track number, a numerical
string that consists of one or more digits
“0” to “9” shall be used
Examples are:
 “1234”, “0000”

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 17 of 42

Song Title ‘TITL‘ Text This item contains a track title.
Song Title (for
data sorting)

‘TITS‘ Text This item contains a track title for data
sorting.

Song Subtitle ‘STIT‘ Text This item contains a track subtitle.
Song Subtitle (for
data sorting)

‘STIS‘ Text This frame contains a track subtitle for
data sorting.

Song Time ‘TLEN‘ Text This item contains the playing duration
of a track in milliseconds. To express
the track duration, it is necessary to use
a nonnegative numerical string that
consists of one or more digits “0” to “9”,
where “0” may not be used as the first
digit.
Examples are:
 Correct : “1234”
 Wrong : “01234”, “-123”, “1.5”

Phonogram Rights ‘PGMR‘ Text This item contains the phonogram rights
(or rights of the master recording) of a
track.

Label/Publisher ‘TPUB‘ Text This item contains the publisher or label
name of a track.

URL to
Label/Publisher

‘WPUB‘ URL This item contains a link to the official
webpage of a track’s record label or
publisher.

Record Company ‘RCDC‘ Text This item contains the recording
company of a track. The recording
company that has release or published
this track is contained.

URL to Record
Company

‘WRCC‘ URL This item contains a link to the official
webpage of the recording company of a
track.

ISRC Code ‘ISRC‘ Text This item contains the International
Standard Recording Code (ISRC) (12-
character code) of a track.

Main Artist ‘MART‘ Text This item contains the main artist of a
track.

Main Artist (for
data sorting)

‘MATS‘ Text This item contains the main artist of a
track for data sorting.

URL to Main Artist ‘WOAR‘ URL This item contains a link to the official
webpage of a track’s artist.

Lyricist ‘TEXT‘ Text This item contains the lyricist of a track.
Lyricist (for data
sorting)

‘TXTS‘ Text This item contains the lyricist of a track
for data sorting.

Song Writer ‘COMP‘ Text This item contains the composer of a
track.

Song Writer (for
data sorting)

‘COMS‘ Text This item contains the composer of a
track for data sorting.

Arranger ‘ARGM‘ Text This item contains the arranger of a
track.

Arranger (for data
sorting)

‘ARGS‘ Text This item contains the arranger of a
track for data sorting.

Producer ‘PRDC‘ Text This item contains the producer of a
track.

Producer (for data ‘PRDS‘ Text This item contains the producer of a

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 18 of 42

sorting) track for data sorting.
Thumbnail (JPEG) ‘THJP‘ JPEG This item contains thumbnail data of a

track. Multiple setting is possible.
Associable with other items. Other
members of this group are “Copyright of
Thumbnail”.

Copyright of
Thumbnail

‘CRTH‘ Text This item contains the copyrights of a
thumbnail of a track. If thumbnail data is
not present, this item shall not exist.
Multiple setting is possible. Associable
with other items. Other members of this
group are “Thumbnail (JPEG)”.

Cover Art (JPEG) ‘CAJP‘ JPEG This item contains a cover art of a track.
Multiple setting is possible. Associable
with other items. Other members of this
group are “Copyright of Cover Art
(JPEG)”.

Copyright of Cover
Art

‘CRCA‘ Text This item contains the copyrights of a
cover art of a track. If cover art data is
not present, this item shall not exist.
Multiple setting is possible. Associable
with other items. Other members of this
group are “Cover Art (JPEG)”.

Lyrics (JPEG) ‘LYJP‘ JPEG This item contains the lyrics data of a
track. Multiple setting is possible.
Associable with other items. Other
members

Copyright of Lyrics ‘CRLY‘ Text This item contains the copyrights of the
lyrics data of a track. If lyrics data is not
present, this item shall not exist. Multiple
setting is possible. Associable with other
items. Other members of this group are
“Lyrics (JPEG)”.

URL to Shop ‘WCOM‘ URL This item contains a link to where the
user can buy this track. Multiple setting
is possible.

Octopus ID ‘8ID ‘ Text Octopus ID which is originally stored in
the Octopus ID Box per track. This item
in a movie-level meta box shall exist
only when all protected tracks in the
movie have identical Octopus IDs.

 512

2.1.5 Media Format Profiles 513
The Marlin Broadband content format refers to the [DLNA1] and [DLNAOMF1] for 514
profiles of codecs and basis of formats. Since the Marlin Broadband content format is 515
based on the [ISOMFF], the formats referred to are also derived from the [ISOMFF] 516
and this document defines the incremental specifications to these formats 517
The referred media format profiles are as follows. 518

 519
Name Description Media

Class
Media
Format

MIMEType Reference

AAC_ISO Mandatory Profile for
audio media class

Audio AAC audio/mp4 [DLNAOMF1]

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 19 of 42

content
AAC_LTP_ISO Profile for audio

media class content
Audio AAC audio/mp4 [DLNAOMF1]

AAC_LTP_MUL
T5_ISO

Profile for audio
media class content
with up to 5.1
channels

Audio AAC audio/mp4 [DLNAOMF1]

AAC_LTP_MUL
T7_ISO

Profile for audio
media class content
with up to 7.1
channels

Audio AAC audio/mp4 [DLNAOMF1]

AAC_MULT5_IS
O

Profile for audio
media class content
with up to 5.1
channels

Audio AAC audio/mp4 [DLNAOMF1]

HEAAC_L2_ISO Profile for audio
media class content

Audio AAC audio/mp4 [DLNAOMF1]

HEAAC_L3_ISO Profile for audio
media class content

Audio AAC audio/mp4 [DLNAOMF1]

HEAAC_MULT5
_ISO

Profile for audio
media class content
with up to 5.1
channels

Audio AAC audio/mp4 [DLNAOMF1]

AVC_MP4_MP_
SD_AAC_MULTI
5

Mandatory profile for
AV class media. AVC
wrapped in MP4
main profile standard
def with AAC audio.

AV MPEG-
4

video/mp4 [DLNAOMF1]

AVC_MP4_MP_
SD_AAC_LTP_
MULT5

AVC wrapped in MP4
main profile standard
def with AAC LTP
audio.

AV MPEG-
4

video/mp4 [DLNAOMF1]

AVC_MP4_MP_
SD_AAC_LTP_
MULT7

AVC wrapped in MP4
main profile standard
def with AAC LTP
audio.

AV MPEG-
4

video/mp4 [DLNAOMF1]

AVC_MP4_MP_
SD_HEAAC_L2

AVC wrapped in MP4
main profile standard
def with HEAAC L2
audio

AV MPEG-
4

video/mp4 [DLNAOMF1]

AVC_MP4_BL_
CIF30_AAC_MU
LT5

AVC wrapped in MP4
baseline profile
CIF30 with AAC
audio

AV MPEG-
4

video/mp4 [DLNAOMF1]

AVC_MP4_BL_
CIF30_HEAAC_
L2

AVC wrapped in MP4
baseline profile
CIF30 with HEAAC
audio

AV MPEG-
4

video/mp4 [DLNAOMF1]

AVC_MP4_BL_
CIF30_AAC_LT
P

AVC wrapped in MP4
baseline profile
CIF30 with AAC LTP
audio

AV MPEG-
4

video/mp4 [DLNAOMF1]

AVC_MP4_BL_
CIF30_AAC_LT

AVC wrapped in MP4
baseline profile

AV MPEG-
4

video/mp4 [DLNAOMF1]

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 20 of 42

P_MULT5 CIF30 with AAC LTP
audio

AVC_MP4_BL_
CIF15_AAC

AVC wrapped in MP4
baseline profile
CIF15 with AAC
audio

AV MPEG-
4

video/mp4 [DLNAOMF1]

AVC_MP4_BL_
CIF15_AAC_LT
P

AVC wrapped in MP4
baseline profile
CIF15 with AAC LTP
audio

AV MPEG-
4

video/mp4 [DLNAOMF1]

 520

2.2 Marlin DRM Content Format (MDCF) 521
The Marlin DCF file format is based on the OMA DCF format. This format is required 522
for the Marlin OMA Delivery specification. 523

2.2.1 Approach 524
The DCF format described in this document is designed to meet the following 525
requirements: 526
• The format SHALL be content format agnostic 527
• It SHALL be possible to create a Marlin DCF from an OMA DCF format and vice 528

versa. 529
 530
The conversion described in this document has to follow the following requirements: 531
It SHOULD be possible to transform OMAv2 DCF’s into Marlin DCF’s without re-532

encryption of the content. 533
Note: It might be possible to transform OMAv2 content to Marlin content without 534
re-encryption by using re-multiplexing (extract and repackage payload) 535

• The conversion from OMA DCF to Marlin SHOULD be reversible. 536
• The conversion SHOULD be performed using a stream process (without the need 537

to store the complete file). 538
 539
The approach taken in this document is to start with the OMA DCF format [OMADCF] 540
and to replace all OMA specific elements with Marlin elements. Features not required 541
for Marlin (e.g. hash) are removed. 542
Furthermore, an DNLA MediaProfile is included as an optional indication in the 543
common headers box and we extended the user data to allow for Marlin defined user 544
data. 545

2.2.2 Marlin DRM Content Format (MDCF) for Discrete Media 546
This section defines the DRM Content Format for Discrete Media. The format is an 547
object-structured file as defined in section 4 of the ISO Base Media File Format 548
specification [ISO14496-12], but it does not include all the media-related structures 549
due to its simplified, media agnostic design. The actual data structures and 550
conformance to the profile is defined in this specification. If a MDCF includes data 551
structures or functionalities not conforming to this specification, a compliant file 552
parser MAY ignore these. Furthermore, the Marlin DCF has been made to be 553
transformable with the OMA DCF format [OMADCF] and has been adopted to hold 554
Marlin specific data. 555

2.2.3 MDCF MIME Type 556
The MIME type for objects conforming to the format defined in this section MUST be 557

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 21 of 42

application/vnd.marlin.drm.mdcf 558

and the corresponding file extension MUST be ”.mdc”. 559

2.2.4 MDCF File Format 560
The structure of the Marlin Discrete Media profile of DRM Content Format (MDCF) 561
MUST be according to the structure definitions below. 562
 563
A MDCF file MUST include at least one MarlinDRMContainer box. The 564
MarlinDRMContainer box is a container for a single Content Object and its 565
associated headers. It MUST appear on the top level, i.e. to conform to this 566
specification, it MUST NOT be nested inside another data type. There MAY exist 567
multiple MarlinDRMContainer boxes in a file, but one MUST immediately follow the 568
file header, and they all MUST be located on the top level in the nesting structure. 569
 570
The version indicator field in each box MUST be 0 for files conforming to this 571
specification. All numeric fields in the format MUST be stored in network byte order. 572

2.2.4.1 Constraints on ISO Format 573
In files conforming to this specification, box size MUST be greater than 1 unless 574
otherwise specified. Some of the mandatory boxes MUST support the 64 bit length 575
field and for those boxes, size field MUST be set to 1. 576
None of the boxes defined in this document SHALL use the extended_type. 577
 578
The FullBox version is typically started from zero (0), incremented by each revision. 579
The flags field MAY be used to include additional information, but SHOULD normally 580
be set to 0, unless otherwise specified. This specification names each supported box 581
to indicate that a box has a defined structure and a purpose in the MDCF. 582
 583
There are also placeholders for extensions, with only a generic box reference. These 584
extensions may be defined later, and thus a conforming file parser SHOULD skip any 585
extension boxes it does not understand. In addition, all of the top level boxes (except 586
ftype) are derived from the FullBox type, which supports version information. Later 587
specifications MAY increment the version number if changes are made to any 588
common data structures. Later versions of the boxes defined in this specification 589
should remain backwards compatible with the help of this version indicator. A parser 590
conforming to this specification MAY attempt to parse a box which has a greater 591
version number than this specification, but the conformance is limited to the current 592
version (0) of this specification. A conforming parser MUST check the version 593
number field. 594

2.2.4.2 File Branding 595
The ISO base media file format defines a File Type box for identifying the major 596
brand of the media file along with compatible brands. Files conforming to this 597
specification MUST include a File Type box with the MDCF brand as the major brand 598
identifier and compatible brand to make the File Type box fixed length. 599
 600
The MDCF major brand is 32 bits (4 octets) wide with the hexadecimal value 601
0x6D646366 (‘mdcf’). This MUST be followed by a four-octet minor version indicator 602
and the MDCF brand as the single compatible brand. The minor version field is in 603
network byte order. For files conforming to this version of the MDCF specification the 604
version value MUST be 1 (0x00000001). A conforming file parser MUST support the 605
minor version number to check whether is support this version of the Marlin DCF. It 606
should be noted that future minor versions of the MDCF file format might use more 607

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 22 of 42

compatible brands in the File Type box. If the file parser encounters MDCF holding 608
minor brand indication it does not support, it SHOULD ignore these files. 609
The Figure 2-1 MDCF file header and body shows the relationship of the File Type, 610
brand, version and rest of the file content. 611

mdcf File data1

VersionBrand

ftyp20

Fixed File Type header

mdcf

Compatible brand
612

Figure 2-1 MDCF file header and body 613

2.2.5 Overall structure 614
The table below outlines the mandatory boxes and their order. Additional boxes MAY 615
be added after the mandatory boxes have first appeared. Table 2-3. Logical MDCF 616
box structure diagram shows the nesting order of the mandatory boxes, on the left is 617
the parent and on the right, the child. The first column indicates which fields and 618
boxes MUST be present in MDCF (marked as ‘M’) and which boxes MAY appear in 619
the MDCF (marked as ‘O’). Note that in the table, the second Marlin DRM Container 620
box MUST include all the mandatory nested boxes as well. 621
 622
The Marlin DRM Container box MUST include a MDCF headers box and a Content 623
Object box. The first Marlin DRM Container box MUST be the first box after the file 624
header (ftype) and the Marlin Discrete Media headers box MUST be the first box in 625
the Marlin DRM Container. 626

 627
Present
in MDCF

Data
type/value

 Nesting
level

Field purpose

M Box(‘ftyp’) 0 File header (fixed
File Type box, 20
bytes)

M Box(‘mdrm’) 0 Marlin DRM
Container box

M Box(‘mdhe’) 1 Marlin Discrete
Media headers
box

M Box(‘mhdr’) 2 MARLIN DRM
Common Headers
box

O Box(‘udta’) 2 ISO User Data
box

O Box(‘idir’) 2 Marlin Metadata
Box (optional)

M Box(‘mdda’) 1 Content Object
box

O Box(‘modc’) 1 Marlin OMA DRM
Container box

O Box(‘mdlb’) 1 Marlin DRM
License Box

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 23 of 42

O Box(‘mdrm’) 0 If multipart MDCF,
additional Marlin
DRM Container
box

O Box(‘mdri’) 0 Marlin DRM
information box

O Box(‘odri’) 1 OMA DRM info
box

O Box(‘mdlb’) 1 Marlin DRM
License Box

O Box(‘skip’) 1 Additional free
space

Table 2-3. Logical MDCF box structure diagram 628

2.2.5.1 Marlin DRM Container Box 629
aligned(8) class MarlinDRMContainer extends FullBox('mdrm', version, 0) { 630
 MarlinDRMDiscreteHeaders ContentHeaders; // Headers for Discrete Media MDCF 631
 MarlinDRMContentObject DRMContent; // Actual encrypted content 632
 Box Extensions[]; // Extensions, to the end of the box 633
} 634

The MarlinDRMContainer box MUST include a single 635
MarlinDRMDiscreteHeaders box and a single MarlinDRMContent box, followed by 636
optional extensions. The Extensions inside the MarlinDRMContainer box are 637
defined by Marlin. The Marlin DRM Container box MUST support 64 bit length 638
attributes, i.e. the size attribute MUST be set to 1, and largesize MUST be used for 639
determining the box size. 640

2.2.5.2 Marlin Discrete Media Headers Box 641
aligned(8) class MarlinDRMDiscreteHeaders extends FullBox('mdhe', version, flags) { 642
 unsigned int(8) ContentTypeLength; // Content Type Length 643
 char ContentType[ContentTypeLength]; // Content Type String 644
 unsigned int(8) MediaProfileLength; // Media Profile Length 645
 char MediaProfile[MediaProfileLength]; // Media Profile String 646
 MarlinDRMCommonHeaders CommonHeaders; // Common headers 647
 if(flags & 0x000001) { 648
 UserDataBox UserData; // ISO User Data Box 649
 } 650
 if(flags & 0x000002) { 651
 MetadataItemDirectoryBox Metadata; // Marlin Metadata 652
 } 653
} 654

The Discrete Media headers box includes fields specific to the MDCF format and the 655
Common Headers box, followed by an optional user-data box. There MUST be 656
exactly one MarlinDRMDiscreteHeaders box in a single Marlin DRM Container 657
box, as the first box in the container. 658
The ContentType field indicates the actual media type contained in the Marlin DRM 659
container. There MUST be exactly one MarlinDRMCommonHeaders (see section 660
2.2.5.2.3 for details) box per a single MarlinDRMDiscreteHeaders box. 661
 662

Field name Type Purpose
ContentTypeLength Unsigned int(8) Length of the ContentType

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 24 of 42

field
ContentType ContentTypeLength octets The MIME media type of the

plaintext data encoded as
US-ASCII

MediaProfileLength Unsigned int(8) Length of the MediaProfile
field

MediaProfile MediaProfileLength octets The media profile of the
plaintext data encoded as
US-ASCII

CommonHeaders MarlinDRMCommonHeaders Marlin DRM Common
Headers box as in 2.2.5.2.3

UserData UserDataBox User Data as defined in
2.2.5.2.4 (OPTIONAL)

Metadata MetadataItemDirectoryBox Marlin Metadata defined in
Section 2.2.5.2.5
(OPTIONAL)

Table 2-4. MARLIN DRM Discrete Media header fields 663

2.2.5.2.1 ContentType 664
The ContentType field MUST indicate the original MIME media type of the Content 665
Object i.e. what content type the result of a successful extraction of the 666
MarlinDRMContentObject box represents. The ContentType field is encoded 667
using US-ASCII encoding and MUST NOT include a NULL character. 668
It is RECOMMENDED that the value represented in the ContentType field follows the 669
values indicated in table 8 of the DNLA interoperability Guidelines 670
[DLNA1][DLNAOMFA1]. 671

2.2.5.2.2 MediaProfile 672
The MediaProfile field SHOULD indicate the DLNA media format profile 673
[DLNA1][DLNAOMFA1] of the Content Object i.e. what content type the result of a 674
successful extraction of the MarlinDRMContentObject box represents. The 675
MediaProfile field is encoded using US-ASCII encoding and MUST NOT include a 676
NULL character. In the case that no MediaProfile field is included, the 677
MediaProfileLength field SHALL be set to 0. 678

2.2.5.2.3 CommonHeaders 679
 680
aligned(8) class MarlinDRMCommonHeaders extends FullBox('mhdr', version, 0) { 681
 unsigned int(8) EncryptionMethod; // Encryption method 682
 unsigned int(8) EncryptionPadding; // Padding type 683
 unsigned int(64) PlaintextLength; // Plaintext 684
content length in bytes 685
 unsigned int(16) ContentIDLength; // Length of 686
ContentID field in bytes 687
 char ContentID[ContentIDLength]; // Content ID string 688
 Box ExtendedHeaders[]; // Extended headers boxes 689
} 690

The Common Headers box defines a structure for the required headers. Their 691
semantics are defined in the sections below. This box MUST appear in a MDCF. 692
 693
A Device MUST NOT modify any of the fields in the Common Headers box. 694

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 25 of 42

2.2.5.2.3.1 Common Headers Version 695
The version field of the FullBox defines which version of DRM Content Format 696
specification was used by the author of the Content Object. The value for version 697
MUST be 0 for objects conforming to this specification. 698
 699

2.2.5.2.3.2 EncryptionMethod Field 700
The EncryptionMethod field defines how the encrypted content can be decrypted. 701
Values for the field are defined in the table below. 702
 703

Algorithm-id Value Semantics
NULL 0x00 No encryption for this object. NULL encrypted Content Objects

may be used without acquiring a Rights Object. Value of the
PaddingScheme field MUST be 0.

AES_128_CBC 0x01 AES symmetric encryption as defined by NIST [AES-MODES].
128 bit keys.
Cipher block chaining mode (CBC).
128 bit initialization vector prefixing the ciphertext.
Padding according to [RFC2630].

AES_128_CTR 0x02 AES symmetric encryption as defined by NIST [AES-MODES].
128 bit keys.
Counter mode (CTR).
128 bit initial counter block is constructed using a unique counter
that prefixes the ciphertext.
No padding.

Table 2-5. Algorithm-id values 704

 705

Content packagers and import functions should take care in using NULL 706
EncryptionMethod because, given a null-encrypted Media Object within a MDCF, the 707
following statements hold true: 708

• Null-encrypted Media Objects do not have any Confidentiality protection. 709
• Null-encrypted Media Objects can always be used without an associated 710

Rights Object. 711

2.2.5.2.3.3 PaddingScheme Field 712
The PaddingScheme parameter defines how the last block of ciphertext is padded. 713
Values of the PaddingScheme field are defined in the table below: 714
 715

Padding-Scheme Value Semantics
None 0x00 No padding (e.g. when using NULL or CTR

algorithm).
RFC_2630 0x01 Padding according to [RFC2630].

Table 2-6. PaddingScheme values 716

2.2.5.2.3.4 PlaintextLength Field 717
The PlaintextLength field defines the length of the original plaintext. If the content is 718
encrypted, it MUST have a PlaintextLength value set. If the extracted content length 719
does not match the PlaintextLength field value, it is an error and the Content Object 720

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 26 of 42

MUST be discarded. In a progressive download scenario, the DRM Client can verify 721
the PlaintextLength only after the complete Content Object has been received and 722
possibly after content use has started. 723

2.2.5.2.3.5 ContentIDLength Field 724
The ContentIDLength field defines the number of bytes occupied by the ContentID 725
field. The value MUST be greater than zero. A Device MUST support Octopus 726
Content Object Identifiers of at least 256 bytes. For best interoperability, content 727
author should not use an Octopus Content Object Identifiers larger than 256 bytes. 728

2.2.5.2.3.6 ContentID Field 729
The ContentID field MUST contain a globally unique identifier for this Content Object. 730
Note that even if two or more Content Objects contain the same Media Object, the 731
Content Objects will each have a different (and globally unique) Octopus Content 732
Object Identifier. The value MUST be encoded using UTF-8 encoding. 733

2.2.5.2.3.7 Extended Headers 734
The ExtendedHeaders field MAY include zero or more nested boxes that add 735
functionalities to the common headers. The ExtendedHeaders field continues until 736
the end of the parent box is reached. 737

2.2.5.2.3.8 Group ID 738

The ExtendedHeaders field MAY include one instance of the MarlinDRMGroupID 739
Box: 740

aligned (8) class MarlinDRMGroupID extends FullBox('grpi', version, 0) { 741
 unsigned int(16) GroupIDLength; // length of the Group ID URI 742
 unsigned int(8) GKEncryptionMethod; // Group Key encryption algorithm 743
 unsigned int(16) GKLength; // length of the encrypted Group Key 744
 char GroupID[GroupIDLength]; // Group ID URI 745
 byte GroupKey[GKLength]; // Encrypted Group Key 746
} 747

The GroupID value identifies this MDCF as part of a group of MDCF's whose Rights 748
can be defined in a common group License instead of (or in addition to) in separate 749
content-specific Licenses. The value of GroupID MUST be a URI according to 750
[RFC2396] and MUST contain a globally unique identifier. The value MUST be 751
encoded using UTF-8 encoding. 752

Generally each content item in a group will be encrypted with a different content item 753
encryption key. A single additional key (used for the whole group) is used to encrypt 754
each content item encryption key for storage in the GroupKey field. This single key is 755
the value of the content encryption key in an associated group license. Note that 756
since the Group ID box is part of the Marlin DRM container box, it is possible for 757
different content items in a multipart MDCF to belong to different groups. The 758
GKEncryptionMethod field defines the algorithm used to encrypt the content item 759
keys, as defined in Section 2.2.5.2.3.2. 760

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 27 of 42

Field name Type Purpose
GroupIDLength unsigned int(16) Length of the Group ID URI field
GKEncryptionMethod unsigned int(8) Group Key encryption algorithm
GKLength unsigned int(16) Length of the GroupKey field
GroupID char[] Group ID URI
GroupKey byte[] Encrypted Group Key

Table 2-7. Group ID box fields 761

2.2.5.2.4 User-Data 762
A user-data box ('udta'), as defined in [ISO14496-12], MAY be present in the discrete 763
headers box. When a MDCF includes the UserDataBox, it MUST be added 764
immediately after the MarlinDRMCommonHeaders box. The presence of the user-765
data box MUST be indicated with the flag 0x000001 in the containing box header. 766
The user-data box is a container box for informative user data. This user information 767
is formatted as a set of sub-boxes with specific box types that more precisely define 768
their usage. Each of the sub-boxes MAY be included only once unless otherwise 769
noted. 770
 771
Some of these sub-boxes contain text information, which is metadata, as defined in 772
[TS26.244]. Devices SHALL at least support the subset of the sub-boxes that is 773
defined in [OMADCF] (except for InfoURL). 774
 775

2.2.5.2.5 MetadataItemDirectoryBox 776
This box is defined in Section 2.1.3.1.2, and MAY be present in a Marlin DCF. 777
 778

2.2.5.3 Content Object Box 779
aligned(8) class MarlinDRMContentObject extends FullBox('mdda', version, 0) { 780
 unsigned int(64) MarlinDRMDataLength; // Length of the encrypted content 781
 byte MarlinDRMData[]; // Encrypted content 782
} 783

The Content Object box MUST include only the data length field and data bytes for a 784
single Content Object. Later revisions of this box may include additional fields, so 785
conforming implementations MUST use the MarlinDRMDataLength field to 786
indicate/determine the amount of actual data bytes. The data length includes the 787
Initialization Vector in the beginning of the encrypted data, as depicted in Figure 2-2. 788
 789

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 28 of 42

Encrypted data

IV
D

at
a

le
ng

th

Padding (if used)

P
la

in
te

xt
 le

ng
th

 790
Figure 2-2: Data Length and IV 791

 792
The Content Object box MUST support the 64 bit size field and thus size MUST be 793
set to 1 and largesize MUST be used for determining actual box size. The 794
MarlinDRMDataLength field MAY indicate a length of zero, and the Device MAY try to 795
acquire the actual Content Object by using e.g. the ContentURL, if provided. 796
 797

Field name Type Purpose
MarlinDRMDataLength Unsigned

int(64)
Length of the MarlinDRMData field, in
octets

MarlinDRMData byte [] Content bytes, as specified by the
MarlinDRMDiscreteHeaders box

Table 2-8: Content Object box 798

2.2.5.4 Extensions 799
Any additional boxes contained in a single Marlin DRM container box have not been 800
defined in this specification. A Content Issuer MAY place additional boxes into the 801
Extensions but Devices MAY ignore these. 802

2.2.5.4.1 Marlin OMA DRM Container box 803
This box allows storage of information related to an OMA DCF file that has been the 804
source for creation of this MDCF. 805
 806
aligned(8) class MarlinOMAContainer extends FullBox('modc', version, 0) { 807
 OMADRMDiscreteHeaders discreteHeaders; 808
 Box OMAextensions[]; 809
} 810

Table 2-9: Marlin OMA Container box fields 811

 812

2.2.5.4.1.1 discreteHeaders 813
THE OMADRMDISCRETEHEADERS BOX AS IS PRESENT IN THE ORIGINAL 814
[OMADCF]. 815

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 29 of 42

2.2.5.4.1.2 OMAextensions 816
The Extensions boxes present in the original [OMADCF]. 817

2.2.5.4.2 Marlin DRM License Box 818
The Octopus License box MAY be used to insert a license, into a MDCF. 819
An Extended Box MAY include one or more Octopus License boxes. 820
 821
aligned(8) class MarlinDRMLicense extends FullBox('mdlb', version, 0) { 822
 unsigned int(32) encoding; 823
 unsigned int(32) encoding_version; 824
 bit(8) license_data[]; // binary Rights Object 825
} 826

Table 2-10: Marlin Octopus License box fields 827

2.2.5.4.2.1 encoding 828
Encoding is four-character code that indicates encoding type of the License_data 829
field. The values defined in this specification are indicated in Table 2-11. 830

2.2.5.4.2.2 encoding_version 831
Encoding_version is an integer that indicates version of the encoding type identified 832
by the encoding field in this box. The values defined in this specification are indicated 833
in Table 2-11. 834

2.2.5.4.2.3 license _data 835
License _data is data that represents the Octopus objects. 836
 837

encoding encoding_version Description
‘xml ‘ 0x00000000 XML encoding used for this version of the

Marlin Broadband file format

Table 2-11, Encoding and encoding version options 838

 839

2.2.5.5 Marlin DRM Information Box 840
The MarlinDRMInformation box MUST be located at the top level of the box 841
hierarchy and there MUST NOT be more than one instance of the box per MDCF. 842
The MarlinDRMInformation box MAY include free space boxes as defined in ISO 843
base media file format [ISO14496-12] to pre-allocate space for editing. A 844
MarlinDRMInformation box MUST NOT appear in the beginning of the file, but 845
MAY appear after the last MarlinDRMContainer (see 2.2.5.1) in MDCF. Having 846
the MarlinDRMInformation box as the last box in the file is RECOMMENDED. 847
A Device MAY modify, extend, truncate, delete or add the MarlinDRMInformation 848
box. The contents of the box MUST be interpreted as an array of Boxes, continuing 849
until the end of the parent box. 850
 aligned(8) MarlinDRMInformation extends FullBox(‘mdri’, version, 0) { 851
 Box data[]; // array of any boxes and free space 852
} 853

2.2.5.5.1 Marlin DRM License Box 854

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 30 of 42

A MarlinDRMInformation box MAY include zero or more Licenses. The License 855
is treated as binary data and a Device MAY add or delete Octopus License boxes in 856
the MarlinDRMInformation box. 857
See Section 2.2.5.4.2. 858

2.2.5.5.2 OMA DRM Info box 859
aligned(8) OMAHash extends Box(‘odri’) { 860
 FileTypeBox ftype; // ftype of original OMA DCF file 861
 Byte OMAHashValue[]; // hash value of the original DCF file 862
} 863

This box contains the hash value of the original OMA file. This allows a process that 864
attempts to reconstruct the original OMA file to check whether this has been 865
achieved. 866

2.2.5.5.2.1 ftype 867
 This is the ftyp box of the original OMA file. 868

2.2.5.5.2.2 OMAHashValue 869
The hash value of the original DCF file as defined in [OMADCF]. 870

2.2.6 Multiple Marlin DRM Containers 871
A MDCF MAY include more than one Marlin DRM Container. Each of these 872
containers MUST conform to the definition of the Marlin DRM Container, and MUST 873
be placed sequentially on the top level (i.e. nesting them is not allowed). The media 874
type of the first Marlin DRM Container is considered to be the default media type of 875
the MDCF’s content. 876
 877
Each Marlin DRM Container MUST have a unique ContentID in its headers. This kind 878
of a MDCF with multiple Content containers is called a Multipart MDCF. 879
 880
Note that a Multipart MDCF is different from a MDCF including a composite object. A 881
Composite Object (such as MIME multipart, ZIP and so on) is included in a single 882
Marlin DRM Container and has only one set of Marlin DRM headers associated with 883
it, whereas Multipart MDCFs contain multiple Marlin DRM Containers each including 884
separate headers associated with the contained content. Multipart MDCFs support 885
the association of different rights with individual Media Objects. 886

2.2.7 Additional Extensions 887
Additional extension boxes MAY be added after the Marlin DRM Container. A 888
conforming file parser, which does not recognize the additional boxes, MUST ignore 889
them. However, any extensions MUST be designed in a way that the mandatory 890
parts of this specification are always included and the file remains interoperable with 891
conforming implementations. 892
 893

2.3 File Format using IPMP for Marlin Broadband Content 894

2.3.1 Overall Designs 895
Marlin Broadband content SHALL use the ISO Base Media File Format [ISOMFF]. In 896
case of the MPEG-4 Audio/Video codecs and/or AVC codec applied, the MP4 file 897
format [MP4FF] and/or AVC file format [AVCFF] are also referred to respectively. 898
 899

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 31 of 42

A file that conforms to this specification uses the Object Descriptor framework and 900
the IPMP framework of MPEG-4 Systems [MP4S] to maintain the security of the 901
content. 902
Figure 2-3 shows an example of a simple interchange file. The figure also outlines 903
how to access to streams through the Object Descriptor framework and hook up the 904
IPMP system to streams. 905
Players shall be capable of parsing any files that are recorded in accordance with this 906
specification. Playback of such files may be done depending on their capabilities. 907
Players, when reading the files, shall ignore boxes or descriptors that are 908
unrecognized or prohibited for use in this section. Malfunctions or hang-ups shall not 909
occur, and parsing should be continued by ignoring such unknown boxes or 910
descriptors while aborting playback is allowed. Recorders shall set the version and 911
flags of all boxes to 0, unless this specification states otherwise. 912

Movie Data box [mdat]

Movie box [moov]

Object Descriptor Stream

Initial OD box [iods]

ES_ID_Inc
Track_ID

ObjectDescriptorUpdate Command
ObjectDescriptor

ES_ID_Ref
index in ‘mpod’

IPMP_DescriptorPointer
IPMP_DescriptorID

ObjectDescriptorID

ObjectDescriptorID
ObjectDescriptor

ES_ID_Ref
index in ‘mpod’

IPMP_DescriptorPointer
IPMP_DescriptorID

ObjectDescriptorID

IPMP_DescriptorUpdate Command
IPMP_Descriptor

IPMP_DescriptorID
IPMP_Descriptor

IPMP_DescriptorID
IPMP_Data IPMP_Data

Track box [trak] (Audio Track)

Sample Description box [stsd]

ES_Descriptor box [esds]

DecoderConfigDescriptor
DecoderConfig Data

Legacy fields

Track box [trak] (Video Track)

Sample Description box [stsd]
Legacy fields

Track box [trak] (OD Track)
Track_ID

Track_ID Track_ID

Interleaved, time-ordered,
Audio access units

Interleaved, time-ordered,
Video access units

Audio Stream

Video Stream

Interleaved, time-ordered, OD access units

… other boxes

Simple Interchange File

Track Ref. Type (‘mpod’)
Track_ID #1
Track_ID #2

ES_Descriptor box [esds]

DecoderConfigDescriptor
DecoderConfig Data

 913
Figure 2-3 An example of a simple interchange file 914

 915
IPMP framework allows for DRM or content protection system to define specific 916
IPMP_data to the DRM or content protection system. The IPMP_data for Marlin is 917
defined in the following sections to carry Octopus related information such as 918
Octopus content identifier. 919
 920
While Octopus allows a license to be delivered separately from the content file, it can 921
also be embedded in the content file. A box definition to store the license is specified 922
in this document. Whenever possible, licenses SHOULD be stored in this box. 923
 924
For this file format, the following brands SHALL appear as compatible brands in File 925
Type Box: 926

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 32 of 42

• ‘isom’ 927
• Appropriate brands according to enclosed codec. e.g. ‘mp42’ for AAC-LC. 928
In addition, ‘iso2’ or later SHALL NOT appear as major brand nor compatible brand in 929
File Type Box. 930
 931
This section addresses the following topics: 932
• Specifications for protection of the Marlin broadband content files. 933
• Extensions to the ISO Base Media File Format using the Private Extension Box. 934
• Stream encryption. 935
 936

2.3.2 Protected Stream Support 937
In this specification, the method for signaling the nature of the protection shall 938
conform to MPEG-4 Systems [MP4S], that is, the IPMP framework shall be used to 939
signal that the streams are protected. 940
This section describes specific IPMP Data in the IPMP Descriptor. See MPEG-4 941
Systems [MP4S] for more details of IPMP framework. 942
 943

2.3.2.1 IPMP System Type 944
An IPMP_data is security information and specified by an IPMP system type. The 945
IPMPS_Type field in the IPMP Descriptor SHALL contain the value 42321 (A551h). 946
The IPMP_data specified by the IPMPS_Type of the value 42321 (A551h) is defined 947
in section 2.3.2.2. 948
 949

2.3.2.2 Protection Information in IPMP_data 950
When a data stream is protected, some configuration information is necessary to 951
decode the protected stream, such as the identifier of the format of the protected 952
stream, the identifier of the cryptographic key, encryption parameters, etc. 953
This specification defines the ‘sinf’ structure to contain such configuration 954
information. Additionally, there are several types of formats to describe such 955
protection information, so this specification also defines the structure and semantics 956
to distinguish those types. This enables multiple ‘sinf’ boxes for each format type to 957
be placed in a single container. 958
 959
The container of this ‘sinf’ boxes is IPMP_data defined by the IPMP framework, the 960
association between the ‘sinf’ box and the stream is represented by the IPMP 961
framework, and the protection information for Marlin Broadband is defined in the 962
following sections. 963
The syntax of the IPMP_data identified by the IPMPS_Type specified in section 964
2.3.2.1 is as follows: 965
 966
aligned(8) class IPMP_data() 967
{ 968
 SecurityInformationDescriptorBox sinf[]; 969
} 970

 971
See section 2.3.2.3 for details of the Security Information Descriptor Box. 972
 973

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 33 of 42

2.3.2.3 Security Information Descriptor Box 974
The protection information in IPMP_data leverages the box structure specified in ISO 975
Base Media File Format [ISOMFF]. As specified in [ISOMFF], Boxes with an 976
unrecognized type or an unrecognized version in case those boxes are extended 977
from FullBox SHALL be ignored and skipped. Note that boxes defined in this section 978
are distinct and independent from those defined in [ISOMFF], although the base data 979
structures are common. For example, values of the box types are assigned and 980
managed independently from those of [ISOMFF]. 981
 982
An overall view of the Security Information Descriptor Box is provided in section 983
2.3.2.3. 984
The table shows top-level boxes in the left-hand column. Boxes contained in another 985
box are indented and listed below the container box. Not all the defined boxes need 986
to be used in all ’sinf’ boxes; the mandatory boxes are marked with an asterisk (*). 987
See the description of the individual boxes for a discussion of the defaults if the 988
optional boxes are not present. 989
In order to improve interoperability and utility of the security information, Scheme 990
Type Box SHALL precede Security Scheme Information Box. 991
 992

Table 2.1 Structure of Security Information Descriptor Box 993

Box Section Description

sinf 2.3.2.3 Container for protection information
 schm * 2.3.2.4 Type descriptor of the protection information
 schi * 2.3.2.5 Specific type of protection information

 994

2.3.2.3.1 Definition 995
Box Type: ‘sinf’ 996
Container: IPMP data 997
Mandatory: Yes 998
Quantity: One or more (exactly one for the same scheme type) 999
This box associates a Scheme Type Box and a Security Scheme Information Box. 1000
 1001

2.3.2.3.2 Syntax 1002
aligned(8) class SecuritInformationDescriptorBox extends 1003
Box(‘sinf’){ 1004
} 1005

 1006

2.3.2.4 Scheme Type Box 1007

2.3.2.4.1 Definition 1008
Box Type: ‘schm’ 1009
Container: Security Information Descriptor Box (‘sinf’) 1010
Mandatory: Yes 1011
Quantity: Exactly one 1012
This box specifies the format type and the version number. Optionally, this box can 1013
contain a URL for a security component server with which software components can 1014
be updated. The URL, which is in component_location field, is optional. The 1015
flags field indicates the existence of the component location field. 1016

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 34 of 42

If an unknown scheme type in this box is found, the containing Security Information 1017
Descriptor Box SHALL be skipped and ignored. 1018

2.3.2.4.2 Syntax 1019
aligned(8) class SchemeTypeBox extends FullBox(‘schm’, 1020
version = 0, flags){ 1021
 unsigned int(32) scheme_type; 1022
 unsigned int(16) scheme_version; 1023
 if (flags & 0x000001){ 1024
 string component_location; 1025
 } 1026
} 1027

 1028

2.3.2.4.3 Semantics 1029
flags This field is a 24-bit integer containing flags; the following flag is defined: 1030

Table 2.2 Flags 1031

Values Description
000001h. Component_location exists flag: indicates that the

component_location field exists.
others reserved

 1032
 In the event that any flags defined here are not used, the flags value should be 000000h. 1033

scheme_type This field contains a four-character code that specifies the type of the protection 1034
information stored in the Security Scheme Information Box which is associated with this box. 1035

scheme_version This field contains a two-byte value that specifies the version of the format. 1036
It provides compatibility of the ‘schi’ box. The value may be increased when the syntax of the 1037
contents of ‘schi’ for the specified scheme_type has some syntax extension and any parser of 1038
an old version for the scheme_type can parse it safely. 1039

component_location This field contains a null-terminated string that specifies a URL of a 1040
security component server. The URL shall conform to [RFC1738] using ASCII characters 1041
only. The octet encoding of the string shall be UTF-8. 1042

 1043

2.3.2.5 Security Scheme Information Box 1044

2.3.2.5.1 Definition 1045
Box Type: ‘schi’ 1046
Container: Security Information Descriptor Box (‘sinf’) 1047
Mandatory: Yes 1048
Quantity: Exactly one 1049
This box contains boxes to describe the protection information specified by the 1050
Scheme Type Box. 1051
This box has the following structure: 1052
 1053

2.3.2.5.2 Syntax 1054
aligned(8) class SecuritySchemeInformationBox extends 1055
Box(‘schi’){ 1056
} 1057

 1058
The contents of this box is dependent on the scheme type of the Scheme Type Box. 1059
 1060

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 35 of 42

The Security Information Descriptor box for Marlin Broadband with the stream 1061
encryption defined in section 2.3.3.1 is identified by the following scheme type and 1062
version number in Scheme Type Box defined in section 2.3.2.4: 1063
Scheme Type: ‘ACBC’ (41434243h) or ‘ACGK’ (4143474bh) 1064
Scheme Version: 1.0 (0100h) 1065
The box structure is shown in Table 2-12 and Table 2-13. When the scheme_type is 1066
set to ‘ACGK’ (4143474bh), the Marlin Group Key Box (‘gkey’) defined in section 1067
2.3.2.14 SHALL appear in this box in addition to all the boxes defined for ‘ACBC’ 1068
(41434243h) scheme_type. Note that boxes other than those described below may 1069
be defined in the future versions of this specification. In such a case, they shall be 1070
treated as boxes of unknown types and ignored. 1071
 1072

Table 2-12 The Structure of the Security Information Descriptor Box for Marlin 1073
Broadband (scheme_type is ‘ACBC’ (41434243h)) 1074

Box Section Description

sinf 2.3.2.3 Container for protection information
 schm * 2.3.2.4 Type descriptor of the protection information
 schi * 2.3.2.5 Specific type of protection information
 8id * 2.3.2.6 Octopus ID Box
 satr * 2.3.2.7 Marlin Security Attributes
 styp * 2.3.2.8 Stream Type
 sgna 2.3.2.9 Signed Attributes (optional)
 rurl 2.3.2.10 Rights URL (optional)
 asig 2.3.2.11 Attribute Signature (optional)
 cert 2.3.2.12 Certificate (optional)
 hmac * 2.3.2.12 HMAC value
 8bdl 2.3.2.13 Octopus Bundle Box (optional)

Note that the mandatory boxes are marked with an asterisk (*). 1075
 1076
 1077

Table 2-13 The Structure of the Security Information Descriptor Box for Marlin 1078
Broadband (scheme_type is ‘ACGK’ (4143474bh)) 1079

Box Section Description

sinf 2.3.2.3 Container for protection information
 schm * 2.3.2.4 Type descriptor of the protection information
 schi * 2.3.2.5 Specific type of protection information
 8id * 2.3.2.6 Octopus ID Box
 gkey * 2.3.2.14 Group Key Box (optional)
 satr * 2.3.2.7 Marlin Security Attributes
 styp * 2.3.2.8 Stream Type
 sgna 2.3.2.9 Signed Attributes (optional)
 rurl 2.3.2.10 Rights URL (optional)
 asig 2.3.2.11 Attribute Signature (optional)
 cert 2.3.2.12 Certificate (optional)
 hmac * 2.3.2.12 HMAC value
 8bdl 2.3.2.13 Octopus Bundle Box (optional)

Note that the mandatory boxes are marked with an asterisk (*). 1080
 1081
 1082

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 36 of 42

2.3.2.6 Octopus ID Box 1083

2.3.2.6.1 Definition 1084
Box Type: ‘8id ’ 1085
Container: Scheme Information Box (‘schi’) 1086
Mandatory: Yes 1087
Quantity: Exactly one 1088
 1089

2.3.2.6.2 Syntax 1090
aligned(8) class OctopusIdBox extends Box(‘8id ’){ 1091
 string id; 1092
} 1093

 1094

2.3.2.6.3 Semantics 1095
id This field contains a null-terminated UTF-8 characters that indicates Octopus Content Object 1096

Identifier. For details on Octopus Content Object Identifiers, refer to Octopus Object. 1097
 1098

2.3.2.7 Marlin Security Attributes Box 1099

2.3.2.7.1 Definition 1100
Box Type: ‘satr’ 1101
Container: Scheme Information Box (‘schi’) 1102
Mandatory: Yes 1103
Quantity: Exactly one 1104
This box stores security attributes for Marlin Broadband. Note that boxes other than 1105
those described below may be defined in the future versions of this specification. 1106
 1107

2.3.2.7.2 Syntax 1108
aligned(8) class SecurityAttributesBox extends Box(‘satr’){ 1109
} 1110

 1111

2.3.2.8 Marlin Stream Type Box 1112

2.3.2.8.1 Definition 1113
Box Type: ‘styp’ 1114
Container: Marlin Security Attributes Box (‘satr’) 1115
Mandatory: Yes 1116
Quantity: Exactly one 1117
 1118

2.3.2.8.2 Syntax 1119
aligned(8) class StreamTypeBox extends Box(‘styp’){ 1120
 string type; // URN that indicates the type of 1121
 // the stream (video or audio) 1122
} 1123

 1124

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 37 of 42

2.3.2.8.3 Semantics 1125
type This field contains a null-terminated character string that indicates the type of the track (or 1126

stream) that it corresponds to. The following values are defined in this specification. For 1127
video and audio, Video steam and Audio steam in the talbe SHALL be used instead of the 1128
General stream. For streams of other media types, handler_type value in Handler Reference 1129
Box in the Track Box which is associated with IPMP_Descriptor including this Marlin Stream 1130
Type Box SHALL be used as <handler_type> in the Table 2-14. When handler_type value 1131
includes characters which are not allowed in URI, the percent-encoding mechanism 1132
[RFC3986] SHALL be used for such characters. The handler_type is defined in the section 8.9 1133
of [ISOMFF]. 1134

Table 2-14 type 1135

Type of Stream Value
Video stream(*) urn:marlin:organization:sne:content-type:video
Audio stream urn:marlin:organization:sne:content-type:audio
General stream urn:marlin:organization:sne:content-type:<handler_type>
others reserved

 * A Subtitle Graphics stream is treated the same as a video stream. 1136
 1137
 1138

2.3.2.9 Marlin Signed Attributes Box 1139

2.3.2.9.1 Definition 1140
Box Type: ‘sgna’ 1141
Container: Marlin Security Attributes Box (‘satr’) 1142
Mandatory: No 1143
Quantity: Zero or exactly one 1144
This box stores signed attributes for Marlin Broadband. The child boxes of this box 1145
SHALL not be accessed unless verification of signature in the Marlin Attribute 1146
Signature Box (‘asig’) succeeds. Note that boxes other than those described below 1147
may be defined in future versions of this specification. 1148
 1149

2.3.2.9.2 Syntax 1150
aligned(8) class SignedAttributesBox extends Box(‘sgna’){ 1151
} 1152

 1153

2.3.2.10 Marlin Rights URL Box 1154

2.3.2.10.1 Definition 1155
Box Type: ‘rurl’ 1156
Container: Marlin Signed Attributes Box (‘sgna’) 1157
Mandatory: No 1158
Quantity: Zero or more 1159
 1160
URLs for Marlin License of this Marlin Content are described in this box. Type of the 1161
URL is indicated by the type field. There SHALL be only one Marlin Rights URL Box 1162
(‘rurl’) with a certain value of the type field in the container, Marlin Signed Attributes 1163
Box (‘sgna’). There MAY be two or more Marlin Rights URL Boxes (‘rurl’) in the 1164
container, if each of them has different value of the type field. 1165
Marlin Rights URL Box (‘rurl’) for Rights URL, which type field is set to 01h, SHALL 1166
appear in the container after all other types of Marlin Rights URL Boxes (‘rurl’). In 1167

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 38 of 42

case that two or more Marlin Rights URL Boxes (‘rurl’) appear in a Marlin Signed 1168
Attributes Box (‘sgna’), the box order indicates the priorities of the URLs. The URLs 1169
SHALL be used according to the appearing order. 1170
 The URL in this box is used for acquiring a Marlin Action Token, a Marlin License, or 1171
an HTML document by sending HTTP GET [RFC2616] to the URL. The MIME-type in 1172
the response tells whether a Marlin Action Token or a Marlin License is returned. 1173
 1174
In case that the type field indicates Rights URL, explicit user consent is REQUIRED 1175
before sending HTTP GET. When requesting to the Rights URL, either of a Marlin 1176
Action Token, a Marlin License or an HTML document which is defined by a Marlin-1177
adopting system SHALL be returned and appropriately handled. 1178
In case that the type field indicates Slient Rights URL or Preview Rights URL, an 1179
attempt to acquire a Marlin Action Token or a Marlin License MAY be made 1180
automatically, i.e. without user interaction. When requesting to the Silent Rights URL 1181
or Preview Rights URL, either of a Marlin Action Token or a Marlin License SHALL 1182
be returned, then appropriately handled. 1183

2.3.2.10.2 Syntax 1184
aligned(8) class RightsURLBox extends FullBox(‘rurl’, version 1185
= 0, flags = 0){ 1186
 unsigned int(8) type; 1187
 unsigned int(8) method; 1188
 string uri; 1189
} 1190

 1191

2.3.2.10.3 Semantics 1192
type This field contains an interger that indicates the type of the URL. The values defined in this 1193

version of the specification are described in Table 2-15. 1194
method This field contains an interger that indicates the method about using the URL. The 1195

values and applicable type of URL defined in this version of the specification are described in 1196
Table 2-16. 1197

url This field contains a null-terminated string that specifies a URL for Marlin License 1198
acquisition. The URL MAY contain a URI template as specified in [MURIT]. The DRM 1199
Client MUST support [MURIT]. Note that the minimal mandatory processing required by 1200
[MURIT] is to remove the template placeholders (i.e., delimited by a “{“ and “}” character) 1201
from the URL or replace it with a “~”. 1202

 1203
Table 2-15 Type in Marlin Rights URL Box 1204

Value Type of URL
00h Reserved
01h Rights URL
02h Slient Rights URL
03h Preview Rights URL
others Reserved

 1205
Table 2-16 Method in Marlin Rights URL Box 1206

Value Method Applicable value
of type of URL

00h no method indicated 01h, 03h

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 39 of 42

01h License should be acquired
silently, on demand when the
content is chosen for playback.

02h

02h License should be acquired in
advance, at the earliest
opportunity.

02h

others Reserved N/A
 1207
 1208

2.3.2.11 Marlin Attribute Signature Box 1209

2.3.2.11.1 Definition 1210
Box Type: ‘asig’ 1211
Container: Marlin Security Attributes Box (‘satr’) 1212
Mandatory: No 1213
Quantity: Zero or exactly one 1214
In case that Marlin Signed Attributes Box (‘sgna’) defined in section 2.3.2.9 exists in 1215
the same container, this box SHALL exist. The target of the signature contained in 1216
this box SHALL be the entire Marlin Signed Attributes Box (‘sgna’) including size and 1217
type fields. 1218

2.3.2.11.2 Syntax 1219
aligned(8) class MarlinAttributeSignatureBox extends 1220
FullBox(‘asig’, version = 0, flags = 0){ 1221
 unsigned int(32) algorithm_ID; 1222
 bit(8) signature[]; // to end of box 1223
} 1224

 1225

2.3.2.11.3 Semantics 1226
algorithm_ID This field is an interger to indicates the algorithm of the signature. Only 1227

00000001h is defined in this version of the specification and indicates RSA-SHA1 with 2048-1228
bit key [RSA-1_5]. All the other values are reserved. 1229

signature This field contains a signature value generated according to the algorithm indicated by 1230
algorithm_ID. The signature SHALL be made by an entity which certificate is issued by a 1231
subordinate Content Metadata Certification Service CA as specified in section 9.4.6.3 of 1232
[MCS]. 1233

 1234
 1235

2.3.2.12 Marlin Certificate Box 1236

2.3.2.12.1 Definition 1237
Box Type: ‘cert’ 1238
Container: Marlin Security Attributes Box (‘satr’) 1239
Mandatory: No 1240
Quantity: Zero or exactly one 1241
This box contains a certificate chain used to verify the signature in the Marlin 1242
Attribute Signature Box (‘asig’). 1243
 1244

2.3.2.12.2 Syntax 1245

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 40 of 42

aligned(8) class MarlinCertificateBox extends FullBox(‘cert’, 1246
version = 0, flags = 0){ 1247
 bit(8) certificates[]; //to end of box 1248
} 1249

 1250

2.3.2.12.3 Semantics 1251
certs This field contains an ordered list of X.509 certificates packaged in a PKIPath [X509Cor1] 1252

for the signature in the Marlin Attribute Signature Box (‘asig’) which resides in the same 1253
container. 1254

 1255
 1256

2.3.2.13 Marlin HMAC Box 1257

2.3.2.13.1 Definition 1258
Box Type: ‘hmac’ 1259
Container: Scheme Information Box (‘schi’) 1260
Mandatory: Yes 1261
Quantity: Exactly one 1262
This box stores an HMAC signature on the Marlin Security Attributes Box (‘satr’). The 1263
target of hmac signature is the entire box (‘satr’) including size and type fields. 1264
In case the scheme_type of the Scheme Type Box (‘schm’) is set to ‘ACBC’ 1265
(41434243h), the encryption key used for the corresponding track SHALL be used to 1266
calculate the HMAC value. Then encryption keys for those tracks SHALL NOT be 1267
identical, if the contents of the Marlin Security Attributes Box in one track are not 1268
identical to the ones in another track. 1269
In case the scheme_type of the Scheme Type Box (‘schm’) is set to ‘ACGK’ 1270
(4143474bh), the key stored in the Marlin Group Key Box (‘gkey’) in encrypted form 1271
SHALL be used to calculate the HMAC value for each track. Then keys for the HMAC 1272
of those tracks SHALL NOT be identical, if the contents of the Marlin Security 1273
Attributes Box in one track are not identical to the ones in another track. 1274
 1275

2.3.2.13.2 Syntax 1276
aligned(8) class HMACBox extends Box(‘hmac’){ 1277
 bit(256) hmac; 1278
} 1279

 1280

2.3.2.13.3 Semantics 1281
hmac This field contains the hash value of the entire contents of Marlin Security Attributes Box 1282

including the size field. It is calculated by HMAC-SHA256 [RFC2104][SHA256]. The 1283
encryption key used for the corresponding track shall be used for calculation of this value. 1284

 1285

2.3.2.14 Octopus Bundle Box 1286

2.3.2.14.1 Definition 1287
Box Type: ‘8bdl’ 1288
Container: Scheme Information Box (‘schi’) or License Information Box (‘uuid’ 1289

with the type value of ‘LICI’) 1290
Mandatory: No 1291

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 41 of 42

Quantity: Zero or more 1292
 1293

2.3.2.14.2 Syntax 1294
aligned(8) class OctopusBundleBox extends Box(‘8bdl’){ 1295
 unsigned int(32) encoding; 1296
 unsigned int(32) encoding_version; 1297
 bit(8) bundle_data[]; 1298
} 1299

 1300

2.3.2.14.3 Semantics 1301
encoding This field contains a four-character code that indicates encoding type of the 1302

bundle_data field. The following value is defined in this specification. 1303
Table 2-17 Encoding 1304

Values Description
‘xml ’
(456D6C20h)

XML encoding used for Marlin Broadband

others reserved
 1305

encoding_version This field contains a four-byte value that indicates the version of the 1306
encoding type identified by the encoding field in this box. It shall be se to 00000000h in this 1307
version. 1308

bundle_data This field contains data that represents the Octopus objects. For details, refer to 1309
Marlin Core System [MCS]. 1310

 1311

2.3.2.15 Marlin Group Key Box 1312

2.3.2.15.1 Definition 1313
Box Type: ‘gkey’ 1314
Container: Scheme Information Box (‘schi’) 1315
Mandatory: No 1316
Quantity: Zero or exactly one 1317
 1318
 This box contains an encrypted form of the content key directly encrypting the media 1319
samples. The content key is encrypted with the key of the Content Key object of the 1320
Marlin License bundle which is associated with the Content ID described in the 1321
Octopus ID Box (‘8id ‘) in the same Security Scheme Information Box (‘schi’). The 1322
encryption algorithm is AES Key Wrap Algorithm [RFC3394]. This box MAY appear 1323
only when scheme_type of Scheme Type Box (‘schm’) is set to ‘ACGK’ (4143474bh). 1324

2.3.2.15.2 Syntax 1325
aligned(8) class GroupKeyBox extends FullBox(‘gkey’, 0, 0){ 1326
 bit(192) encrypted_ckey; 1327
} 1328

 1329

2.3.2.15.3 Semantics 1330
encrypted_ckey This field contains a content key directly encrypting associated media 1331

samples. The content key is encrypted with the key in the Marlin License bundle associated 1332
with Content ID in Octopus ID Box (‘8id ‘) in the same container. The encryption algorithm 1333
of the key is AES Key Wrap Algorithm [RFC3394]. 1334

Copyright (c) Marlin Developer Community, 2003-2010. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 42 of 42

 1335

2.3.2.16 License Information Box 1336

2.3.2.16.1 Definition 1337
Box Type: ‘uuid’ 1338
Type Value: ‘LICI’ 1339
Container: File 1340
Mandatory: No 1341
Quantity: Zero or one 1342
This box is a container for all boxes containing license information. This box is 1343
always required when license information is contained in a Marlin broadband content 1344
file. 1345
The contents of this box is usually prepared by a content distribution service provider 1346
and transferred via such a service. It is prohibited for compliant products to create or 1347
modify the contents of this box except when appending this box or the boxes defined 1348
in the following sections as it is at the end of this box. 1349
Note that boxes other than those defined in the following sections may be present in 1350
this box. In such a case, they shall be treated as boxes of unknown types and 1351
ignored. 1352
 1353

2.3.2.16.1.1 Syntax 1354
aligned(8) class LicenseInformationBox extends Box(‘uuid’, 1355
‘LICI’){ 1356
} 1357

 1358

2.3.3 Stream Encryption 1359

2.3.3.1 AES with 128-bit key in CBC mode 1360
The encryption algorithm is AES [AES] with 128-bit key. The encryption mode is CBC 1361
defined in [AES-MODES]. The encryption chaining of CBC mode is exercised per 1362
media sample of the ISO Base Media File Format after being padded according to 1363
the [RFC2630]. The encrypted data is preceded by initialization vector (IV) defined in 1364
[AES-MODES] for CBC mode and forms a media sample consisting of a media 1365
stream as shown below. 1366
 1367
aligned(8) class AESCBCEncryptedSample { 1368
 unsigned int(128) IV; 1369
 unsigned int(8) encrypted_data[]; 1370
} 1371

 1372

	1 Introduction
	1.1 Document Organization
	1.2 Conformance Conventions
	1.3 Names and Identifiers
	1.4 Abbreviations
	1.5 Terms and Definitions
	1.6 References
	1.6.1 Normative References
	1.6.2 Informative References

	2 File Format for Marlin Content
	2.1 File Format for Marlin Broadband Content
	2.1.1 File Identification
	2.1.2 Protection Scheme Information
	2.1.2.1 ISMA Salting Key Box
	2.1.2.1.1 Definition
	2.1.2.1.2 Syntax
	2.1.2.1.3 Semantics

	2.1.2.2 Octopus ID Box
	2.1.2.2.1 Definition
	2.1.2.2.2 Syntax
	2.1.2.2.3 Semantics

	2.1.2.3 Octopus Bundle Box
	2.1.2.3.1 Definition
	2.1.2.3.2 Syntax
	2.1.2.3.3 Semantics

	2.1.3 Additions to the ISO Base Media File Format
	2.1.3.1 Metadata structure
	2.1.3.1.1 Handler type
	2.1.3.1.2 Metadata Item Directory Box
	2.1.3.1.3 Metadata Item Box
	2.1.3.1.4 Item Data Entry
	2.1.3.1.5 Item Reference Entry
	2.1.3.1.6 Item Language Entry

	2.1.3.2 Signed metadata
	2.1.3.2.1 Scheme Type
	2.1.3.2.2 Scheme Information
	2.1.3.2.3 Metadata Signature Box

	2.1.4 Metadata Items
	2.1.5 Media Format Profiles

	2.2 Marlin DRM Content Format (MDCF)
	2.2.1 Approach
	2.2.2 Marlin DRM Content Format (MDCF) for Discrete Media
	2.2.3 MDCF MIME Type
	2.2.4 MDCF File Format
	2.2.4.1 Constraints on ISO Format
	2.2.4.2 File Branding

	2.2.5 Overall structure
	2.2.5.1 Marlin DRM Container Box
	2.2.5.2 Marlin Discrete Media Headers Box
	2.2.5.2.1 ContentType
	2.2.5.2.2 MediaProfile
	2.2.5.2.3 CommonHeaders
	2.2.5.2.3.1 Common Headers Version
	2.2.5.2.3.2 EncryptionMethod Field
	2.2.5.2.3.3 PaddingScheme Field
	2.2.5.2.3.4 PlaintextLength Field
	2.2.5.2.3.5 ContentIDLength Field
	2.2.5.2.3.6 ContentID Field
	2.2.5.2.3.7 Extended Headers
	2.2.5.2.3.8 Group ID

	2.2.5.2.4 User-Data
	2.2.5.2.5 MetadataItemDirectoryBox

	2.2.5.3 Content Object Box
	2.2.5.4 Extensions
	2.2.5.4.1 Marlin OMA DRM Container box
	2.2.5.4.1.1 discreteHeaders
	2.2.5.4.1.2 OMAextensions

	2.2.5.4.2 Marlin DRM License Box
	2.2.5.4.2.1 encoding
	2.2.5.4.2.2 encoding_version
	2.2.5.4.2.3 license _data

	2.2.5.5 Marlin DRM Information Box
	2.2.5.5.1 Marlin DRM License Box
	2.2.5.5.2 OMA DRM Info box
	2.2.5.5.2.1 ftype
	2.2.5.5.2.2 OMAHashValue

	2.2.6 Multiple Marlin DRM Containers
	2.2.7 Additional Extensions

	2.3 File Format using IPMP for Marlin Broadband Content
	2.3.1 Overall Designs
	2.3.2 Protected Stream Support
	2.3.2.1 IPMP System Type
	2.3.2.2 Protection Information in IPMP_data
	2.3.2.3 Security Information Descriptor Box
	2.3.2.3.1 Definition
	2.3.2.3.2 Syntax

	2.3.2.4 Scheme Type Box
	2.3.2.4.1 Definition
	2.3.2.4.2 Syntax
	2.3.2.4.3 Semantics

	2.3.2.5 Security Scheme Information Box
	2.3.2.5.1 Definition
	2.3.2.5.2 Syntax

	2.3.2.6 Octopus ID Box
	2.3.2.6.1 Definition
	2.3.2.6.2 Syntax
	2.3.2.6.3 Semantics

	2.3.2.7 Marlin Security Attributes Box
	2.3.2.7.1 Definition
	2.3.2.7.2 Syntax

	2.3.2.8 Marlin Stream Type Box
	2.3.2.8.1 Definition
	2.3.2.8.2 Syntax
	2.3.2.8.3 Semantics

	2.3.2.9 Marlin Signed Attributes Box
	2.3.2.9.1 Definition
	2.3.2.9.2 Syntax

	2.3.2.10 Marlin Rights URL Box
	2.3.2.10.1 Definition
	2.3.2.10.2 Syntax
	2.3.2.10.3 Semantics

	2.3.2.11 Marlin Attribute Signature Box
	2.3.2.11.1 Definition
	2.3.2.11.2 Syntax
	2.3.2.11.3 Semantics

	2.3.2.12 Marlin Certificate Box
	2.3.2.12.1 Definition
	2.3.2.12.2 Syntax
	2.3.2.12.3 Semantics

	2.3.2.13 Marlin HMAC Box
	2.3.2.13.1 Definition
	2.3.2.13.2 Syntax
	2.3.2.13.3 Semantics

	2.3.2.14 Octopus Bundle Box
	2.3.2.14.1 Definition
	2.3.2.14.2 Syntax
	2.3.2.14.3 Semantics

	2.3.2.15 Marlin Group Key Box
	2.3.2.15.1 Definition
	2.3.2.15.2 Syntax
	2.3.2.15.3 Semantics

	2.3.2.16 License Information Box
	2.3.2.16.1 Definition
	2.3.2.16.1.1 Syntax

	2.3.3 Stream Encryption
	2.3.3.1 AES with 128-bit key in CBC mode

