

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 1 of 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

Starfish 13
Version 1.2 14
Final 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
Source Marlin Developer Community
Date August 22, 2006
 30
 31

32

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 2 of 2

Notice 33

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO REPRESENTATION OR 34
WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE COMPLETENESS, 35
ACCURACY, OR APPLICABILITY OF ANY INFORMATION CONTAINED IN THIS 36
DOCUMENT. THE MARLIN DEVELOPER COMMUNITY (“MDC”) ON BEHALF OF 37
ITSELF AND ITS PARTICIPANTS (COLLECTIVELY, THE "PARTIES") DISCLAIM 38
ALL LIABILITY OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, ARISING 39
OR RESULTING FROM THE RELIANCE OR USE BY ANY PARTY OF THIS 40
DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. THE PARTIES 41
COLLECTIVELY AND INDIVIDUALLY MAKE NO REPRESENTATIONS 42
CONCERNING THE APPLICABILITY OF ANY PATENT, COPYRIGHT (OTHER 43
THAN THE COPYRIGHT TO THE DOCUMENT DESCRIBED BELOW) OR OTHER 44
PROPRIETARY RIGHT OF THIS DOCUMENT OR ITS USE, AND THE RECEIPT 45
OR ANY USE OF THIS DOCUMENT OR ITS CONTENTS DOES NOT IN ANY WAY 46
CREATE BY IMPLICATION, ESTOPPEL OR OTHERWISE, ANY LICENSE OR 47
RIGHT TO OR UNDER ANY PATENT, COPYRIGHT, TRADEMARK OR TRADE 48
SECRET RIGHTS WHICH ARE OR MAY BE ASSOCIATED WITH THE IDEAS, 49
TECHNIQUES, CONCEPTS OR EXPRESSIONS CONTAINED HEREIN. 50

Use of this document is subject to the agreement executed between you and the 51
Parties, if any. 52

Any copyright notices shall not be removed, varied, or denigrated in any manner. 53

Copyright © 2003 - 2009 by MDC, 415-112 North Mary Avenue #383 Sunnyvale, CA 94085, 54
USA. All rights reserved. Third-party brands and names are the property of their respective 55
owners. 56

Intellectual Property 57

A commercial implementation of this specification requires a license from the Marlin Trust 58
Management Organization. 59

Contact Information 60

Feedback on this specification should be addressed to: editor@marlin-community.com 61

Contact information for the Marlin Trust Management Organization can be found at: 62
http://www.marlin-trust.com/ 63

 64

mailto:editor@marlin-community.com�

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 3 of 3

 65
Contents 66
1 Introduction ...4 67

1.1 Goal and Scope ...4 68
1.2 Document Organization ...4 69
1.3 Conformance Conventions ..4 70
1.4 Namespaces and Identifiers ..5 71

1.4.1 Namespaces and Notation ..5 72
1.5 Abbreviations ...5 73
1.6 Terms and Definitions ..5 74
1.7 Starfish Values ...6 75
1.8 References ..6 76

2 Goals ..8 77
3 HBES Architecture ...9 78

3.1 Overview ..9 79
3.2 Initial Configuration ..9 80

3.2.1 Tree structure ..9 81
3.2.2 Node Path IDs and Device IDs ..9 82

3.3 Key Generation and Pre-distribution .. 10 83
3.3.1 Key Assignment .. 10 84
3.3.2 Device Key Set ... 11 85

3.4 Node Exclusion ... 12 86
4 BKB Encoding ... 14 87

4.1 BKB Fields .. 14 88
4.2 Binary BKB Encoding ... 15 89

4.2.1 Bit/Byte ordering ... 15 90
4.2.2 Binary BKB Format ... 15 91

4.3 XML BKB Encoding .. 16 92
4.3.1 <sf:BroadcastKeyBlock> Element .. 16 93

4.3.1.4.1.1 <ds:CanonicalizationMethod> .. 18 94
4.3.1.4.1.2 <ds:SignatureMethod> ... 18 95
4.3.1.4.1.3 <ds:Reference> .. 18 96
Appendix A. Hash algorithm: HBES SHA-1 ... 20 97
Appendix B. An Example HBES Key Tree (HKT) .. 21 98
Appendix C. An Example HBES Node Key Set (HNK) .. 22 99
Appendix D. Example of Exclusion .. 23 100

D.1. Determining the KEKs in one Group .. 23 101
D.2. The List of Excluded Node IDs ... 24 102

Appendix E. BKB Example ... 25 103
Appendix F. Example of KEKs and HNKs .. 28 104
Appendix G. Pseudocode for bK Extraction ... 33 105
Appendix H. Starfish XML Schema .. 35 106
 107

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 4 of 4

1 Introduction 108

1.1 Goal and Scope 109
This specification describes Starfish, which is the Marlin broadcast encryption scheme 110
based on HBES (Hierarchical Hash-Chain Broadcast Encryption Scheme). This 111
specification documents HBES and the usage of a key tree structure and a Broadcast 112
Key Block structure to provide a secret Broadcast Key to all Leaf Nodes (e.g., 113
representing devices) in the tree except for ones that are excluded (for example, due to 114
a security compromise). 115

1.2 Document Organization 116
This specification is organized as follows: 117
 118
Introduction 119
Introductory information, including lists of namespaces, abbreviations, definitions, and 120
references. 121
 122
Goals 123
A brief description of the Starfish goals. 124
 125
HBES Architecture 126
An overview of the HBES architecture, including the HBES tree structure, the sets of 127
keys assigned in advance to Nodes in the tree, and the Broadcast Key Block that 128
specifies which Nodes are excluded and supplies a Broadcast Key to Nodes that are not 129
excluded. 130
 131
BKB Encoding 132
A description of the two mechanisms for encoding and formatting a Broadcast Key Block. 133
 134

1.3 Conformance Conventions 135
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 136
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this 137
specification are to be interpreted as described in IETF RFC 2119 [RFC2119]. 138
 139
These capitalized key words are used to unambiguously specify requirements and 140
behavior that affect the interoperability and security of implementations. When these key 141
words are not capitalized they are meant in their natural-language sense. 142
 143
All elements of this specification are considered Normative unless specifically marked 144
Informative. All Normative Elements are Mandatory to implement, except where such an 145
element is specifically marked OPTIONAL. Finally, where Normative elements are 146
described as OPTIONAL, they MAY be omitted from an implementation, but when 147
implemented, they MUST be implemented as described. 148

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 5 of 5

1.4 Namespaces and Identifiers 149
This specification defines a schema conforming to XML Schemas [Schema] and 150
normative text to describe the syntax and semantics of XML-encoded objects and 151
protocol messages. In cases of disagreement between the schema document and the 152
schema listing in this specification, the schema document takes precedence. Note that in 153
some cases the normative text of this specification imposes constraints beyond those 154
indicated by the schema document. 155

1.4.1 Namespaces and Notation 156
The following table summarizes the normative schema defined by this specification and 157
its XML namespace [XMLns] URI. This URI MUST be used by implementations of this 158
specification: 159
 160
Prefix XML Namespace Schema File

Name
Description

sf: http://marlin-drm.com/starfish/1.2 Starfish.xsd Starfish schema
 161
In addition to the schema defined by this specification, we leverage existing schemas to 162
achieve our design goals. The following table summarizes the external schemas used in 163
this specification: 164
 165
Prefix XML Namespace Reference
ds: http://www.w3.org/2000/09/xmldsig# [xmldsig]
xs: http://www.w3.org/2001/XMLSchema [Schema]
 166

1.5 Abbreviations 167
bK Broadcast Key
BKB Broadcast Key Block
HBES Hierarchical Hash-Chain Broadcast Encryption Scheme
HKT HBES Key Tree
HNK HBES Node Key Set
KEK Key Encryption Key
npid Node Path ID
devid Device ID

1.6 Terms and Definitions 169

Ancestor Node A Node on the path from a given Node up to the root
Node, not including the given Node itself.

Broadcast Key A key made available by a Broadcast Key Block to Non-
Excluded Nodes.

Broadcast Key Block A data structure used to exclude some Nodes and
provide a Broadcast Key to Non-Excluded Nodes.

Completely
Excluded Node An Excluded Node with no Non-Excluded descendants.

d The depth (number of levels) of an HBES Key Tree.

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 6 of 6

Descendant Node
A Node that is on one of the (multiple) paths from a
given Node down to the Leaf Nodes, not including the
given Node itself.

Device ID
A bit pattern that uniquely identifies a Leaf Node by
specifying the path from the HBES Key Tree root to the
Leaf Node.

Device Key Set
A set that includes the HBES Node Key set of a Leaf
Node and the HBES Node Key sets of its Ancestor
Nodes.

E The number of Representative Excluded Leaf Nodes in
an HBES Key Tree .

Excluded Node A Node that is Excluded. An ancestor of an Excluded
Node is also an Excluded Node.

Group The t immediate Descendant Nodes of a given Node, or
the t Nodes of Layer 0 of an HKT.

HBES Key Tree A key management structure for HBES.
HBES Node Key Set A unique set of keys assigned to a Node.

Interval A set of cyclically consecutive Non-Excluded Nodes in a
Group.

Key Encryption Key A key associated with an Interval and used in a
Broadcast Key Block to encrypt a Broadcast Key.

KSIZE The byte size of the Broadcast Key.

Leaf Node A Node (of an HBES Key Tree) that has no Descendant
Nodes. Used in Starfish to represent a device.

Maximal Completely
Excluded Node

A Completely Excluded Node whose parent is not a
Completely Excluded Node.

Node An object in an HBES Key Tree hierarchy that may be
excluded.

Node Path ID The ordinal number of a Node within its Group.
Non-Excluded Node A Node that is not excluded.

Representative
Excluded Leaf Node

A Leaf Node for which either (1) it is a Maximal
Completely Excluded Node, or (2) it is the leftmost
descendant Leaf Node of a Maximal Completely
Excluded Node.

t The number of Nodes in each Group in a tree. Thus, the
term “t-ary tree” means that each Group has t Nodes.

1.7 Starfish Values 170
d 16
KSIZE 16
t 16

1.8 References 172
[AES] NIST FIPS 197: Advanced Encryption Standard (AES),

November 2001,
http://csrc.nist.gov /publications/fips/fips197/fips-197.pdf

[CS] D.Naor, M.Naor and J.Lotspiech, “Revocation and Tracing
Schemes for Stateless Receivers”, in Advances in
Cryptology – CRYPTO 2001, LNCS 2139, 2001, 41-62

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 7 of 7

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate
Requirement Levels, IETF RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt.

[RFC4051] D. Eastlake 3rd. Additional XML Security Uniform Resource
Identifiers (URIs). IETF RFC4051. April 2005.
http://www.ietf.org/rfc/rfc4051.txt

[RSA] PKCS #1 : RSA Encrytion Standard (RSA) Version
1.5 http://www.rsasecurity.com/rsalabs/node.asp?id=2125

[Schema] XML Schema Part 1: Structures. W3C Recommendation. D.
Beech, M. Maloney, N. Mendelsohn, H. Thompson. May
2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

XML Schema Part 2: Datatypes. W3C Recommendation. P.
Biron, A. Malhotra. May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

[SHA-1] NIST FIPS 180-1: Secure Hash Standard (SHA-1), Apr.
1995, http://www.itl.nist.gov/fipspubs/fip180-1.htm

[xmldsig] XML-Signature Syntax and Processing W3C
Recommendation http://www.w3.org/TR/xmldsig-core/

[xml-exc-c14n] Exclusive XML Canonicalization, Version 1.0, W3C
Recommendation. 18 July 2002
http://www.w3.org/TR/xml-exc-c14n/

[XMLns] Namespaces in XML. W3C Recommendation. T. Bray, D.
Hollander, A. Layman. January 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114

http://www.ietf.org/rfc/rfc2119.txt�
http://www.ietf.org/rfc/rfc4051.txt�
http://www.rsasecurity.com/rsalabs/node.asp?id=2125�
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/�
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/�
http://www.itl.nist.gov/fipspubs/fip180-1.htm�
http://www.w3.org/TR/xmldsig-core/�
http://www.w3.org/TR/xml-exc-c14n/�
http://www.w3.org/TR/1999/REC-xml-names-19990114/�

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 8 of 8

2 Goals 173
The Starfish goals are the following: 174

• Device Exclusion (Note: “Exclusion” is the proper term, rather than “revocation,” 175
as revocation implies disablement of functionality. In general, services will only 176
exclude devices from access to new content.) 177

o Exclusion of specific device ID(s) 178
o Exclusion of a family of devices 179

• The amount of permanent device storage needed to store exclusion-related 180
information should be minimal. 181

• The size of the transmitted exclusion-related information should be minimal. 182
 183

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 9 of 9

3 HBES Architecture 184

3.1 Overview 185
HBES is a symmetric key mechanism that makes a Broadcast Key (bK) 186
cryptographically available to a large set of Nodes (the Non-Excluded Nodes) in a tree 187
structure, while preventing access by a smaller set of Excluded Nodes. A Broadcast Key 188
Block (BKB) is derived from the Broadcast Key and the set of Excluded Nodes. A Non-189
Excluded Node may recover the Broadcast Key from a BKB and, for example, use it to 190
decrypt a media Content Key. 191
 192
One goal of HBES is to minimize the length of a BKB, the computing time to recover a 193
bK, and the size of the Device Key Set for a Leaf Node. The Device Key Set for a Leaf 194
Node includes the Node Keys for that Node and the Node Keys of all its Ancestor 195
Nodes. All keys are assigned in advance. 196
 197
With most broadcast encryption schemes, if for a fixed number of exclusions the 198
transmission overhead decreases linearly, then the storage increases exponentially. 199
With HBES, however, the storage size (the size of the Device Key Set) increases linearly 200
because of its usage of a hash chain. Thus, HBES has lower transmission overhead 201
than other broadcast encryption schemes for similar storage costs. 202

3.2 Initial Configuration 203

3.2.1 Tree structure 204
The HBES Key Tree (HKT) is a t-ary tree. In Starfish, t is equal to 16. The HKT is used 205
to manage Node exclusion. Each Leaf Node has a unique Device Key Set consisting of 206
its t keys (its HBES Node Key Set) and the HBES Node Key Sets of all its Ancestor 207
Nodes. The HKT provides the basis for calculating the Device Key Set for each Leaf 208
Node and for creating a BKB structure that can be used to exclude one or more Nodes. 209
 210
The HKT has a layered structure. In Starfish, the depth d (the number of layers) is 16. 211
The first layer descending from the root contains the highest t Nodes and is called Layer 212
0. The immediate layer below Layer 0 consists of t2 Nodes and is called Layer 1. The 213
Nodes at the bottom of the HKT, those at Layer d-1, are the Leaf Nodes. 214
 215
All Nodes that are on the path from a Node up to the root Node (excluding the Node 216
itself) are called Ancestor Nodes of that Node. All Nodes that are on a path from a Node 217
down to and including a Leaf Node (but excluding the Node itself) are called Descendant 218
Nodes of that Node. Formally, a Leaf Node is a Node with no Descendant Nodes. HBES 219
defines a Group to be the t immediate Descendant Nodes of a given Node. In other 220
words, a Group consists of a set of t Nodes sharing the same parent (immediate 221
Ancestor Node). The children of a Node are its immediate Descendant Nodes. 222

3.2.2 Node Path IDs and Device IDs 223
Each Node in a Group is identified by a unique Node Path ID, denoted by npid. The 224
value of an npid is in the range 0 to t-1. A Node Path ID is assigned sequentially from 225
the leftmost Node in the Group to the rightmost Node in the Group. Thus, the leftmost 226

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 10 of 10

Node is Node 0, the Node to its right is Node 1, and the rightmost Node is Node t-1. The 227
size of the Node Path ID is log2 t bits. 228
 229
Every Leaf Node has a unique Device ID, denoted by devid. The value of a Leaf Node’s 230
devid is the concatenation of all Ancestor Node npids with the Leaf Node’s npid. That 231
is, the leftmost log2 t bits of a devid are the npid of the Leaf Node’s Ancestor Node in 232
Layer 0. The next log2 t bits are the npid of the Leaf Node’s ancestor node in Layer 1, 233
and so on. The last log2 t bits of the devid are the npid of the Leaf Node itself. 234
 235
See Figure 2 in Appendix B for an example of a 4-ary HKT (t=4). In a 4-ary HKT, each 236
npid is 2 bits (log2 4) long, and there are 4 layers in the example , so a devid is 8 bits 237
long. In Starfish, a Device ID is 64 bits (= 4 bits per npid * 16 layers). 238

3.3 Key Generation and Pre-distribution 239
 240
HBES functions as follows: Each Node in a t-ary HBES Key Tree is assigned in advance 241
t keys, referred to as the HBES Node Key Set (HNK) for that Node. A Leaf Node Key Set 242
contains its HNK and all the HNKs of its Ancestor Nodes. Thus, in Starfish, a device 243
(represented by a Leaf Node) is assigned 256 keys (16 layers * 16 keys per layer). 244
 245
There is a relationship, described below, between the keys assigned to a Node and 246
those assigned to the other Nodes in its Group. The characteristics of this relationship 247
enable efficient exclusion of Nodes. To provide a Broadcast Key to Non-Excluded Nodes 248
only, a Broadcast Key Block containing one or more encryptions of the Broadcast Key 249
(depending on how many Nodes are excluded) is sent to all Nodes. For each Broadcast 250
Key encryption, the encryption is done using one of the keys in a Non-Excluded Node 251
such that Excluded Nodes do not have and cannot calculate the key used for encryption, 252
whereas Non-Excluded Nodes can. 253

3.3.1 Key Assignment 254
Each Node in a Group is assigned a seed value as one of its keys. The seed value for 255
Node i in the Group is denoted by Si for 0 ≤ i ≤ (t-1). All seed values should be randomly 256
generated and pairwise independent. 257
 258
The keys of a given Node (its HBES Node Key Set) consist of the Node’s seed and t-1 259
keys that are the result of applying the HBES SHA-1 hash function (see Appendix A), 260
denoted by h, one or more times to each of the seed values of the other Nodes in its 261
Group. For each Node i, h(Si), that is, the result of performing the hash once on Si, is 262
assigned to the Node to the immediate “right” of Node i. In general, the Node to the right 263
of Node i is Node i+1, except that the Nodes of a Group are viewed cyclically such that 264
Node 0 is considered to be to the right of Node t-1. Thus, in an 8-ary tree, Node 0 is to 265
the right of Node 7, and h(S7) is assigned to Node 0. 266
 267
The result of performing the hash function twice, starting with the value Si, is referred to 268
as h2(Si). This value is assigned as a key for the Node two Nodes to the right of Node i. 269
The remaining keys are assigned in a similar fashion, with h3(Si) assigned to the Node 3 270
Nodes to the right of Node i, and so on until ht-1(Si) is assigned to the Node t-1 Nodes to 271
the right (i.e., one Node to the left). 272
 273

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 11 of 11

As a result, the HBES Node Key Set (HNK) of Node i, for 0 ≤ i ≤ (t-1), is a sequence of 274
values ki,n for 0 ≤ n ≤ (t-1), where 275
 276
 ki,n = h((i+t-n) mod t)(Sn) 277
 278
For example, for t=8, the HNK of Node i=0 is 279
 280
 k0,0, k0,1, k0,2, k0,3, k0,4, k0,5, k0,6, k0,7 281
 282
In this case, i+t = 8 , so the HNK of Node 0 is 283
 284
 h((8-0) mod 8)(S0), h((8-1) mod 8)(S1), h((8-2) mod 8)(S2), h((8-3) mod 8)(S3), 285

h((8-4) mod 8)(S4), h((8-5) mod 8)(S5), h((8-6) mod 8)(S6), h((8-7) mod 8)(S7) 286
 287
which is 288
 289
 S0, h7(S1), h6(S2), h5(S3), h4(S4), h3(S5), h2(S6), h(S7) 290
 291
Similarly, the HNK of Node i=4 is 292
 293
 k4,0, k4,1, k4,2, k4,3, k4,4, k4,5, k4,6, k4,7 294
 295
which, since i+t= 12, is 296
 297
 h((12-0) mod 8)(S0), h((12-1) mod 8)(S1), h((12-2) mod 8)(S2), h((12-3) mod 8)(S3), 298

h((12-4) mod 8)(S4), h((12-5) mod 8)(S5), h((12-6) mod 8)(S6), h((12-7) mod 8)(S7) 299
 300
which is 301
 302
 h4S0, h3(S1), h2(S2), h1(S3), S4, h7(S5), h6(S6), h5(S7) 303
 304
Figure 3 in Appendix C shows an example of the HNK for each of the Nodes in a Group 305
with eight Nodes. 306

3.3.2 Device Key Set 307
Each Leaf Node stores a unique Device Key Set, which consists of the HNK of the Leaf 308
Node and the HNKs of all its Ancestor Nodes. For a 16-ary tree and a key size of 16 309
bytes, the Device Key Set size is 4K bytes long: 310
 311

16 layers * 16 node keys * 16 bytes per key 312
 313
The order of keys in a Device Key Set is the HNK of the Node’s ancestor in Layer 0, 314
followed by the HNK of the Node’s ancestor in Layer 1, and so on. The ordering of the 315
keys in the HNK for each Node i is as shown below: 316
 317
 ki,0, ki,1, ki,2, ki,3, ... , ki,(t-2) , ki,(t-1) 318
 319
where the values ki,n for 0 ≤ n ≤ (t-1) are as defined in §3.3.1. The order of the Device 320
Key Set MUST be preserved so that the receiver of a Broadcast Key Block can recover 321

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 12 of 12

the Broadcast Key, based on the node exclusion information discussed in the next 322
section. 323

3.4 Node Exclusion 324
Once a Broadcast Key, bK, is selected, bK is encrypted with Key Encryption Keys 325
(KEKs). A KEK is a key used to encrypt bK such that only Non-Excluded Nodes have or 326
can calculate the KEK and thereby decrypt the bK. Which keys are used, and how many 327
are used, depend on which Nodes are excluded and how many Nodes are excluded. 328
 329
An Interval is a set of cyclically consecutive Non-Excluded Nodes in a Group containing 330
one or more Excluded Nodes. “Cyclically consecutive” means that Node 0 is considered 331
to be to the right of Node t-1. Thus, if a Group contains one or more Excluded Nodes, 332
and both Node 0 and Node t-1 are Non-Excluded, they are in the same Interval. 333
 334
The start Node of an Interval is the unique Node in the Interval whose immediate left 335
neighbor is an Excluded Node (and thus not in the Interval). In other words, the start 336
Node of an Interval is the Node to the immediate right of the rightmost Excluded Node 337
preceding the Interval, keeping in mind the fact that Node 0 is considered to be to the 338
right of Node t-1. 339
 340
A KEK is determined for each Interval in each Group containing at least one Excluded 341
Node and at most t-1 Excluded Nodes. The KEK for an Interval is the result of hashing 342
the start Node’s seed value one time less than the number of Nodes in the Interval. The 343
relationships between the keys stored by the Nodes in a Group (see Appendix C) are 344
such that all Non-Excluded Nodes in the Interval either have the KEK or they have 345
another key that can be hashed one or more times to calculate the KEK, but the 346
Excluded Nodes do not have the KEK and cannot calculate it. See Figure 4 in Appendix 347
D and its accompanying description for an example showing the determination of KEKs 348
for a Group containing two Intervals. 349
 350
A Broadcast Key Block (BKB) contains the encryptions of the bK, one per KEK. The 351
encryptions using the KEKs for Intervals in Groups in Layer 0 (if any) are stored first, 352
followed by the encryptions using the KEKs for the Intervals in Groups in Layer 1, and so 353
on. For a given Layer, the encryptions using the KEKs for the leftmost Group containing 354
one or more Intervals are stored first, followed by the encryptions using the KEKs for the 355
second-leftmost Group containing Intervals, and so on. For a given Group, the 356
encryption using the KEK for the first Interval is stored first, followed by the encryption 357
using the KEK for the second Interval, and so on. (The first Interval for a Group is the 358
Interval with the lowest-numbered start Node. The second Interval is the one with the 359
second lowest-numbered start Node, and so on.) 360
 361
A BKB also contains a list of Excluded Node IDs. The Excluded Node IDs are an 362
encoding identifying which Nodes are excluded at each Layer. They can be used to 363
determine the Intervals in each Group that contains one or more (up to t-1) Excluded 364
Nodes, and this information is sufficient to know which KEKs were used to encrypt the 365
bK. See Appendix G for example pseudocode for determining a KEK that a Non-366
Excluded Node either has or can calculate, and then using that KEK to decrypt one of 367
the encryptions and thereby extract the bK. 368
 369

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 13 of 13

The Excluded Node IDs are constructed as described in the following. You may want to 370
consult the example in Appendix D.2 as you read the description. First, a few definitions 371
are in order: An Excluded Node is considered a Completely Excluded Node if either (1) 372
its descendants are all Excluded Nodes, or (2) it is a Leaf Node (which has no 373
descendants). A Maximal Completely Excluded Node is a Completely Excluded Node 374
whose parent is not a Completely Excluded Node. A Leaf Node is a Representative 375
Excluded Leaf Node if either (1) it is a Maximal Completely Excluded Node, or (2) it is 376
the leftmost descendant Leaf Node of a Maximal Completely Excluded Node. 377
 378
The first step in creating the Excluded Node IDs is to count the number of 379
Representative Excluded Leaf Nodes, E. This is the same as the number of Maximal 380
Completely Excluded Nodes. 381
 382
The list of Excluded Node IDs contains E entries per Layer. The E entries for Layer 0 383
appear first, followed by the E entries for Layer 1, and so on through Layer d-1 (i.e., 384
Layer 15 in Starfish). The first entry for a Layer provides information regarding the Node 385
in that Layer that is the Ancestor Node of the first Representative Excluded Leaf Node 386
(device), viewing the Leaf Nodes from left to right. The second entry for a Layer provides 387
information regarding the Node in that Layer that is the Ancestor Node of the second 388
Representative Excluded Leaf Node, and so on. (Note: The Ancestor Nodes of an 389
Excluded Leaf Node are also excluded.) 390
 391
Each entry is a 2-tuple (gid, npid), where both gid and npid are of size log2t bits (4 bits 392
for the 16-ary Starfish tree, but only 2 bits for the 4-ary tree in the example). 393
 394
The npid portion of each entry is the Node Path ID npid (see §3.2.2) of the specified 395
Node in its Group. 396
 397
Each gid is one of three possible values: 0, 1, and -1 (11…12). The gids are determined 398
as follows: 399

1. The gid for the first entry for a Layer is 00…02, unless the Node currently being 400
processed is a descendant of a Maximal Completely Excluded Node, in which 401
case the gid is 11…12. 402

2. The gids for subsequent entries for a Layer are the following: 403
1) The gid is is 11…12 if the Node currently being processed is a 404

descendant of a Maximal Completely Excluded Node. Otherwise: 405
2) The gid is the same as the previous entry’s gid if the previous entry’s 406

Node and the current Node are in the same Group. 407
3) If they are in different Groups, the gid is the previous entry’s gid + 1 (mod 408

2). 409
 410
 411

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 14 of 14

4 BKB Encoding 412
This specification defines two mechanisms for encoding and encapsulating the 413
information which comprises the BKB: 414
 415

• A binary representation, defined in §4.2. 416
• An XML representation, defined in §4.3, which builds upon elements of the binary 417

representation. 418

4.1 BKB Fields 419
A BKB consists of nine fields, defined as follows: 420
 421
BKB Length The entire length in bytes of the BKB (including the length of this

field), when the BKB is in its binary format.

Structure Version The number of times the BKB format has been revised. Each time
the BKB format is changed, the Structure Version is incremented
by one. The initial Structure Version number is 0.

Revocation Version A revocation version number. BKBs are issued as an ordered
series. Each time one or more additional Nodes are excluded, the
Revocation Version of the BKB is incremented by one. The initial
Revocation Version number is 0.

Key Check Data A hashed value1

Reserved

 of the Broadcast Key. A processor MAY verify
the correctness of the Broadcast Key obtained from the BKB by
executing the following steps:
Step 1: Compute the Broadcast Key by decrypting one of the
encryptions using a KEK.
Step 2: Hash the Broadcast Key.
Step 3: Compare the Key Check Data value and the hashed
value.
Step 4: If the two values are equal, the computed Broadcast Key
is correct.
Step 5: Otherwise, the processor may retry Step 1 or stop this
process.
The size of this field is equal to the size of a Broadcast Key. The
byte size of the Broadcast Key is denoted by KSIZE.

Free space set aside for future use. The value of this field for this
version of the BKB structure must be set to 0x0 for all bytes.

Number of
Representative
Excluded Leaf
Nodes

The number of Representative Excluded Leaf Nodes, as
described in §3.4. This value is denoted by E in the following, for
describing the components of the BKB that may vary relative to
the value of E.

1 This specification uses HBES SHA-1 (defined in Appendix A) as the hash function.

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 15 of 15

Excluded Node IDs A sequence of the Excluded Node IDs, as described in §3.4. The

size of this field is 128E bits (= 16E bytes).

Signature A signature covering all the fields preceding this field, specifically,
BKB Length, Structure Version, Revocation Version, Key Check
Data, Reserved, Number of Representative Excluded Leaf Nodes,
and the sequence of Excluded Node IDs.

Encrypted
Broadcast Keys

A sequence of Broadcast Keys, each encrypted by a KEK that is
determined by an Interval, as described in §3.4. The size of each
encrypted Broadcast Key is equal to KSIZE. The total size of this
field is dependent on E (the number of Representative Excluded
Leaf Nodes).

4.2 Binary BKB Encoding 422
A BKB contains information that enables all Non-Excluded Nodes to compute the 423
Broadcast Key. Table 4-1 defines the binary format of the BKB. Refer to Appendix E for 424
a detailed example of this format. 425

4.2.1 Bit/Byte ordering 426
All data variables in this specification are presented with the most significant bit (or byte) 427
on the left-hand side and the least significant bit (or byte) on the right-hand side. Where 428
a variable is broken down into a number of substrings, the leftmost (most significant) 429
substring is numbered 0, the next most significant is numbered 1, and so on through to 430
the least significant. 431

4.2.2 Binary BKB Format 432
Table 4-1 shows the binary BKB format. The size of the BKB depends on the number of 433
Representative Excluded Leaf Nodes. 434
 435

Bytes Size Field Name Collection

0 ~ 3 4 bytes BKB Length

Revocation
Information
Fields

4 ~ 7 4 bytes Structure Version
8 ~ 11 4 bytes Revocation Version
12 ~ 27 16 bytes Key Check Data
28 ~ 35 8 bytes Reserved

36 ~ 39 4 bytes Number of Representative Excluded Leaf Nodes
(= E)

40
~
16E + 39

variable
Excluded Node IDs in Layer 0 (8E bits) ||2
…
Excluded Node IDs in Layer 15 (8E bits)

16E+40 ~ 128 Signature3

2 The “||” symbol is meant to represent concatenation of octet sequences.
3 The signature covers the fields in the gray area, i.e., BKB Length ~ Excluded Node IDs.

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 16 of 16

16E+167 bytes

16E+168
~
the value
of BKB
Length
minus
one

variable

bK encrypted using the KEK generated from the
first Interval in Layer 0 ||

…
bK encrypted using the KEK generated from the
last Interval in Layer 0 ||

…
bK encrypted using the KEK generated from the
first Interval in Layer 15 ||

…
bK encrypted using the KEK generated from the
last Interval in Layer 15

Encrypted
Broadcast
Keys

Table 4-1 Binary BKB Format 436

The signature MUST follow the guidance given in PKCS #1 version 1.5 [RSA], with the 437
exception of the digest algorithm, which must be SHA-1 (i.e., SHA-1 with RSA). The 438
binary representation of the BKB limits the signature field to 128 bytes. Thus the 439
modulus MUST be 1024 bits (i.e., 128 bytes). The binary BKB format only represents the 440
signature value; neither the algorithm nor the signer information is conveyed by that 441
encoding. This specification defines the algorithm information (in this paragraph), but the 442
signer information is out of scope for this specification. 443
 444
The algorithm used to encrypt the Broadcast Key in the Encrypted Broadcast Keys 445
collection must be AES [AES]. The key size is fixed at 128 bits, which equates to a 446
KSIZE of 16 bytes. Each Broadcast Key encryption is the result of a single AES 128-bit 447
block cipher operation. (This is effectively ECB mode.) The output of each encryption of 448
the Broadcast Key consumes 16 bytes. 449

4.3 XML BKB Encoding 450
The XML schema for the XML BKB encoding defined in this section is depicted in 451
Appendix H. This encoding offers greater flexibility than the binary encoding in 452
describing the security properties of a signed BKB. Specifically, the XML encoding can 453
express more information regarding the signing algorithm, the key used to sign the 454
revocation information, and the authority that issued the public key certificate. This 455
flexibility is a consequence of using [xmldsig] to represent a digital signature. 456
 457
The following sections describe the XML encoding semantics and the relationships 458
between the XML elements and the fields of a BKB. 459

4.3.1 <sf:BroadcastKeyBlock> Element 460
The <sf:BroadcastKeyBlock> element encapsulates the Broadcast Key Block 461
information. 462

4.3.1.1 keyTreeName Attribute 463
The < sf:BroadcastKeyBlock> MUST identify the key tree name by specifying a URI for 464
this attribute. The assignment of this identifier is out of scope for this specification, as it is 465
an operational issue. However, it is RECOMMENDED that the identifier for the name of 466
the HBES Key Tree use the following syntax: 467
 468

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 17 of 17

 urn:marlin:starfish:keytree:[Key Tree Number] 469
 470
where the [Key Tree Number] is a monotonically increasing positive integer. 471

4.3.1.2 <sf:RevocationInformation> Element 472
The < sf:RevocationInformation> element bears a Base64 encoded instance of the 473
binary representation of the Revocation Information Fields collection defined in Table 474
4-1. The < sf:RevocationInformation> element also defines attributes that aid in 475
processing the encapsulated Revocation Information Fields and that support a 476
mechanism to identify the location where an updated BKB may be acquired. 477

4.3.1.2.1 structureVersion Attribute 478
The structureVersion attribute represents the same information as the Structure Version 479
field defined in §4.2.2. The same information is Included in the Base64 encoded 480
instance of the Revocation Information Fields collection. However, its presence in the 481
structureVersion attribute is intended to give the processor a hint so that the processor 482
can determine in advance whether the encapsulated revocation information is new. 483

4.3.1.2.2 revocationVersion Attribute 484
The revocationVersion attribute represents the same information as the Revocation 485
Version field defined in §4.2.2. The same information is Included in the Base64 encoded 486
instance of the Revocation Information Fields collection. However, its presence in the 487
revocationVersion attribute is intended to give the processor a hint so that the processor 488
can determine in advance whether the encapsulated revocation information is new. 489

4.3.1.2.3 distributionURIs Attribute 490
The distributionURIs attribute provides a list of URIs that can be resolved to obtain the 491
newest BKB. That is, each URI is a pointer to the current BKB. All implementations 492
MUST be prepared to resolve the URI using the HTTP GET method. 493

4.3.1.2.4 issuedOn Attribute 494
The issuedOn attribute provides the time at which the BKB was issued. Note that a new 495
BKB may be issued independent of the revocation version. For example, this may occur 496
so as to minimize the lifetime of a given broadcast key. Thus this attribute can be used to 497
determine the currency of a BKB relative to another BKB. 498

4.3.1.2.5 nextUpdate Attribute 499
The nextUpdate attribute indicates the time at which an updated BKB will be published. 500
This value MUST be later relative to the issuedOn attribute. A party which relies upon 501
the BKB to exclude access to a given broadcast key can rely upon this attribute as an 502
indication of when to resolve the distributionURI. 503

4.3.1.3 <sf:EncryptedBroadcastKeys> Element 504
The < sf:EncryptedBroadcastKeys> element bears a Base64 encoded instance of the 505
binary representation of the Encrypted Broadcast Keys collection defined in Table 4-1. 506

4.3.1.4 <ds:Signature> Element 507
The signature MUST be detached and the <ds:Signature> element SHALL be present in 508
the <sf:BroadcastKeyBlock> element that contains the XML representation of the signed 509
<sf:RevocationInformation> element. 510

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 18 of 18

 511
The <ds:Signature> block MUST contain: 512

• A <ds:SignedInfo> element 513
• A <ds:SignatureValue> element 514
• A <ds:KeyInfo> element 515

4.3.1.4.1 <ds:SignedInfo> 516
The <ds:SignedInfo> MUST embed the following elements: 517

4.3.1.4.1.1 <ds:CanonicalizationMethod> 518
The <ds:CanonicalizationMethod> element is empty and its ds:Algorithm attribute MUST 519
have the following value: 520
 521
 http://www.w3.org/2001/10/xml-exc-c14n# 522

4.3.1.4.1.2 <ds:SignatureMethod> 523
The <ds:SignatureMethod> element is empty and its ds:Algorithm attribute SHALL have 524
one of the following values: 525
 526

http://www.w3.org/2000/09/xmldsig#rsa-sha1 527
 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 528
 529
as specified in [xmldsig] and [RFC4051], respectively. 530

4.3.1.4.1.3 <ds:Reference> 531
There MUST only be one <ds:Reference> element inside the <ds:SignedInfo> block. 532
The value of the ds:URI attribute of the <ds:Reference> element MUST be the ID 533
attribute of the < sf:RevocationInformation> element. 534
The <ds:DigestMethod> element is empty and its ds:Algorithm attribute MUST have one 535
of the following values: 536

http://www.w3.org/2000/09/xmldsig#sha1 537
 http://www.w3.org/2001/04/xmlenc#sha256 538
 539
as specified in [xmldsig] and [xmlenc], respectively. 540
 541
The <ds:DigestValue> element MUST contain the Base64 encoded value of the digest. 542

4.3.1.4.2 <ds:SignatureValue> 543
The signature value MUST be the Base64 encoded value of the signature of the 544
canonicalized ([xml-exc-c14n]) <ds:SignedInfo> element with the key described in the 545
<ds:KeyInfo> element. 546

4.3.1.4.3 <ds:KeyInfo> 547
The public key used to verify the signature MUST be carried in an X.509 v3 certificate, 548
and MUST be accompanied by other certificates necessary to complete the certificate 549
path to a trust anchor. 550

 551
These certificates MUST be carried, encoded in Base64, in <ds:X509Certificate> 552
elements. These <ds:X509Certificate> elements are embedded in a <ds:X509Data> 553
element which is a child of the <ds:KeyInfo> element, and MUST appear in sequential 554

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 19 of 19

order, starting from the signing key’s certificate. The certificate of the trust anchor is 555
omitted (since it cannot necessarily be determined to be trusted). 556

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 20 of 20

Appendix A. Hash algorithm: HBES SHA-1 557
HBES SHA-1 is a hash algorithm that utilizes SHA-1. As specified in [SHA-1], SHA-1 558
produces a 160-bit digest (hash) from a message. The HBES SHA-1 algorithm is the 559
following: The SHA-1 algorithm is given a 128-bit value as input and outputs a 160-bit 560
value. The 128 most significant bits are extracted from the 160-bit output. Thus, the 561
HBES SHA-1 algorithm produces a 128-bit digest from a 128-bit input message. 562
 563
The hash produced as a result of executing the HBES SHA-1 algorithm using seed Si as 564
input is denoted T0. The HBES SHA-1 algorithm can then be executed again, this time 565
taking T0 as input. The result is designated T1. This can be input to HBES SHA-1, 566
producing T2, and so on. Thus, Tj-1 designates the result of performing the hash j times. 567
Figure 1 shows HBES SHA-1 being executed multiple times, starting with seed Si. Table 568
4-2 shows the SHA-1(160-bit) and HBES SHA-1 (128-bit) hash outputs for performing 569
the HBES SHA-1 algorithm three times, starting with the specified random seed Si. 570
 571

SHA- 1

Si

Take 128 m.s.b

T0 = HBES SHA- 1(Si) T1= HBES SHA- 1(T0)
= HBES SHA- 1(HBES SHA- 1(Si))
= HBES SHA- 12(Si)

T1

Tj- 1 = HBES SHA- 1j(Si)

Tj- 1
T0

SHA- 1

Take 128 m.s.b

SHA- 1

Take 128 m.s.b

SHA- 1

Si

Take 128 m.s.b

T0 = HBES SHA- 1(Si) T1= HBES SHA- 1(T0)
= HBES SHA- 1(HBES SHA- 1(Si))
= HBES SHA- 12(Si)

T1

Tj- 1 = HBES SHA- 1j(Si)

Tj- 1
T0

SHA- 1

Take 128 m.s.b

SHA- 1

Take 128 m.s.b

 572
Figure 1. Performing HBES SHA-1 j times, starting with seed Si 573

 574
A seed Si 0x4ecc9377b6b6229549b5b941cde9ef1b

Result of
hashing once

SHA-1 0x2f715941d912cd23a2f0492346ca1c671A07759f

HBES SHA-1 0x2f715941d912cd23a2f0492346ca1c67

Result of
hashing twice

SHA-1 0x27682ebad05eeb3e8578f2eb379519b46e9fe685

HBES SHA-1 0x27682ebad05eeb3e8578f2eb379519b4

Result of
hashing three
times

SHA-1 0x862bca975cbf2c1fa9c78adfd8e133dfcf7b0927

HBES SHA-1 0x862bca975cbf2c1fa9c78adfd8e133df

Table 4-2 An example of SHA-1 and HBES SHA-1 575

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 21 of 21

Appendix B. An Example HBES Key Tree (HKT) 576
Figure 2 shows an example of a 4-ary tree and the npid and devid (see §3.2.2) of one 577
of the Leaf Nodes. 578
 579

Layer 0

Layer 1

Layer 2

npid 0

0 1 2 3 0 1 2 3 0 1 2 3

Group

npid 1 npid 2 npid 3

npid 0 npid 1 npid 3

npid 3

npid 2 devid 0132=000111102

Layer 3

npid 2

 580
Figure 2. An example of HKT (t = 4) 581

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 22 of 22

Appendix C. An Example HBES Node Key Set (HNK) 582
Figure 3 shows the composition of the HBES Node Key Set (HNK) for each of the Nodes 583
in a Group with eight Nodes. In a t-ary tree, there are t Nodes per Group and each Node 584
has t keys. The Nodes in a Group are numbered from left to right as Node 0, Node 1,... 585
Node t-1. The figure shows the keys for the Nodes in a Group in an 8-ary tree. The 8 586
keys of each Node (i.e., its HNK) are shown in the column below the Node designation 587
(Node 0, Node 1, etc.). 588
 589
Each Node i includes a seed value Si as one of its keys. All seed values are randomly 590
generated and pairwise independent. In addition to the seed value, each Node contains 591
t-1 (7 in this example) keys whose values are the result of applying a hash function, 592
denoted by h, one or more times to each of the seed values of the other Nodes in the 593
Group. The notation hj (Si) indicates the result of applying the hash function j times, with 594
Si as the initial input to the hash function. In Starfish, the hash function is HBES SHA-1, 595
as described in Appendix A. The assignment of keys is described in §3.3.1. 596
 597

S0 h(S0) h2(S0) h3(S0) h4(S0) h5(S0) h6(S0) h7(S0)

S1 h(S1) h2(S1) h3(S1) h4(S1) h5(S1) h6(S1)h7(S1)

S2 h(S2) h2(S2) h3(S2) h4(S2) h5(S2)h6(S2) h7(S2) …

S7h(S7) h2(S7) h3(S7) h4(S7) h5(S7) h6(S7) h7(S7)

Group

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

S0 h(S0) h2(S0) h3(S0) h4(S0) h5(S0) h6(S0) h7(S0)S0 h(S0) h2(S0) h3(S0) h4(S0) h5(S0) h6(S0) h7(S0)

S1 h(S1) h2(S1) h3(S1) h4(S1) h5(S1) h6(S1)h7(S1) S1 h(S1) h2(S1) h3(S1) h4(S1) h5(S1) h6(S1)h7(S1)

S2 h(S2) h2(S2) h3(S2) h4(S2) h5(S2)h6(S2) h7(S2) S2 h(S2) h2(S2) h3(S2) h4(S2) h5(S2)h6(S2) h7(S2) …

S7h(S7) h2(S7) h3(S7) h4(S7) h5(S7) h6(S7) h7(S7) S7h(S7) h2(S7) h3(S7) h4(S7) h5(S7) h6(S7) h7(S7)

Group

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

 598
Figure 3. An example of the HNK in a Group of eight Nodes (t = 8) 599

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 23 of 23

Appendix D. Example of Exclusion 600

D.1. Determining the KEKs in one Group 601
Figure 4 shows a Group in an 8-ary tree where Node 1 and Node 6 are excluded. In this 602
example, there are only two Representative Excluded Leaf Nodes (E=2), and the Group 603
depicted is the single Group at Layer 0. Node 1 is the Layer 0 Ancestor Node of the 604
leftmost Representative Excluded Leaf Node, and Node 6 is the Layer 0 Ancestor Node 605
of the other Representative Excluded Leaf Node. (When a Leaf Node is excluded, all its 606
Ancestor Nodes are also excluded.) 607
 608
As described in §3.4, an Interval is a set of cyclically consecutive Non-Excluded Nodes 609
in a Group. In this example, the Group contains two Intervals. Interval 1 consists of four 610
Nodes (Node 2 through Node 5), and Interval 2 consists of two Nodes (Node 7 and 611
Node 0). The start Node of an Interval is the Node whose immediate left neighbor is an 612
Excluded Node, so the start Node is Node 2 for Interval 1 and Node 7 for Interval 2. 613
 614
A Key Encryption Key (KEK) is determined for each Interval in a Group. A KEK is used 615
to encrypt a Broadcast Key (bK) such that only the Non-Excluded Nodes in the Interval 616
have or can calculate the KEK and thereby decrypt the bK. The KEK for an Interval is 617
the result of hashing the start Node’s seed value one time less than the number of 618
Nodes in the Interval. Thus, the seed value for Interval 1 is S2, since Node 2 is the start 619
of Interval 1, and the KEK is h3(S2), the result of hashing S2 three times. If you look at the 620
keys for each of the Nodes in the Group (see Appendix C) , you can see that only the 621
Nodes in Interval 1 can calculate this KEK. That is, Node 5 directly contains this key, 622
Node 2 has the seed S2 and can calculate the key by hashing S2 three times, Node 3 623
has h(S2) and can calculate the KEK by hashing that twice, and Node 4 has h2(S2) and 624
can calculate the KEK by hashing that once. Similarly, the KEK for Interval 2 is h(S7), the 625
result of hashing S7 one time (one time less than the Interval length of 2). 626
 627
The BKB is as follows. Since only the Layer 0 Group is shown in the figure, the Excluded 628
Node IDs shown are only those for Layer 0. 629
 630

<BKB len., S. ver., R. ver., KCD, Res., # of E. Nodes = 2> 631
 632

<0000012, 0001102, …, Sig., E(h3(S2), bK), E(h(S7), bK)> 633
 634

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

h(S7) S2 h(S2) h2(S2) h3(S2) S7

Group

Interval 1 Interval 2

Non-excluded Node

Excluded Node 635
Figure 4. An example of determining KEKs (t = 8) 636

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 24 of 24

D.2. The List of Excluded Node IDs 637
Figure 5 shows an example of a 4-ary tree in which 7 Leaf Nodes are excluded: all 638
Nodes in the 10th Group in Layer 3, the 1st Node in the 22nd Group in Layer 3, and the 2nd 639
and 3rd Nodes in the 55th Group in Layer 3. Since the Ancestor Nodes of each excluded 640
Leaf Node are also always excluded, such Nodes are also depicted as excluded in the 641
figure. 642
 643
When constructing the BKB, the value E is the number of Representative Excluded Leaf 644
Nodes, as defined in §3.4. For the 10th Group in Layer 3, only the leftmost Node in the 645
Group is a Representative Excluded Leaf Node, so in this example, E is 4. In the BKB , 646
the list of Excluded Node IDs appears following E. The list contains E entries per Layer, 647
so in this example there are 16 entries (4 Layers * 4 entries per Layer). The Excluded 648
Node IDs are constructed as described in §3.4. Note that for a 4-ary tree, each gid and 649
npid are 2bits. 650
 651

<BKB len., S. ver., R. ver., KCD, Res., # of Representative Excluded Leaf Nodes E = 4> 652
 653

<00002, 00012, 00112, 00112, 00102, 01012, 00012, 00012> 654
 655

<00012, 01012, 00102, 00102, 11002, 00002, 01012, 01102> 656
 657

<Sig.> <E(S2 of the first group in Layer 0), bK)> 658
 659

<E(h2(S3) of the 1st group in Layer 1), bK)> <E(h2(S2) of the 2nd group in Layer 1), bK)> 660
 661

<E(h2(S2) of the 4th group in Layer 1), bK)> <E(h2(S2) of the 3rd group in Layer 2), bK)> 662
 663

<E(h2(S2) of the 6th group in Layer 2), bK)> <E(h2(S3) of the 14th group in Layer 2), bK)> 664
 665

<E(h2(S1) of the 22nd group in Layer 3), bK)> <E(h(S3) of the 55th group in Layer 3), bK)> 666
 667

 668
Figure 5. An example having 7 Excluded Leaf Nodes (t = 4) 669

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 25 of 25

Appendix E. BKB Example 670
This section provides an example of how HBES Node exclusion works, using the full 671
structure of HBES for 264 users and the complete 16-ary tree, as shown in Figure 6. In 672
this example, there is one Representative Excluded Leaf Node and the HNKs are those 673
specified in Appendix F. Assume that the Broadcast Key is the following 674
 675
bK = 0x0d93e99d7f10aef880d82cf95bed6e41 676
 677
and parameters for RSA are as follows: 678
 679
• RSA composite : pq = 680

0xa4149336adb7e2997d01f023754abbce28193bb121d64157970826bc37d654162c681
3846c303cf4ecfdc2a357447a134f03d89cb0ddb332e83313d1c11bcf342509f461aa5682
2ba0163cf25072ba1d6955bf66edd0274ec9e22981e096030590abdd210f1cb5039b5683
2372affedb69ca47d5ec118cadd4c1161d790415c59821bbeb5 684

• p = 685
0xcd44f67cb7ece79b27ee3c941e4e12bbd2da1a065cc5f9308d00d26fba73b6fb5ac0686
bb93389753d0976b55503e867a82e047715f34ff25e816a24e03111afd91 687

• q = 688
0xcca1a7a4fb9a153660d0c179bfa41968ecc3ac5216b046f0db495c240678c797605e689
20027c3aea6d0686a904944b5ada3a799526d0c7e99a3402d35112422ce5 690

• Public key : e = 0x010001 691
• Secret key : d = 692

0x1e78bfba38dadc975ab2e071055862b66f95f812f650bf03d045b043e62ec4a0f5876693
204d7914976aad19fe9bf5fbde01bdd9a3b318938cb1e7ad5daa97797c9eb1a879a36694
d49a76eb3d1b28de047852835e06e446b12a774ca1350661fe077738a53cc2deb3d3695
24d6404f439ee2a356e3188b9b15afb9c8a24bd85e2ff13ec1 696

 697
In this example, Node 4 of the 2nd group in Layer 15 is excluded, so its Ancestor Nodes 698
are also excluded. As with Figure 5, the Excluded Nodes are depicted using squares in 699
Figure 6. None of the keys in the HBES Node Key Set (HNK) of Node 4 of the 2nd group 700
in Layer 15, nor any keys that can be calculated from the keys in its HNK, should be 701
used as the KEK for Layer 15, since this would allow Node 4 to access the Broadcast 702
Key. Similarly, none of the keys in the HNKs for that Excluded Node’s Ancestor Nodes, 703
nor keys that can be calculated from the keys in those HNKs, should be used as KEKs 704
for their Layers. Since it is desirable to limit the size of the BKB, it is best to use the 705
smallest possible subset of the remaining keys that cover all Non-Excluded Nodes. The 706
algorithms for specifying Excluded Node IDs and for determining and utilizing KEKs (see 707
§3.4) ensure that is the case. 708
 709

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 26 of 26

 710
Figure 6. An example of one Excluded Node 711

In this example , the BKB is 712
 713
<440, 0, 1, 0x826f7c67388c79e6bff174e35cf5307c, 0, 1> 714
<000000002, 000000002, 000000002, 000000002, 000000002, 000000002, 000000002, 715
000000002> 716
<000000002, 000000002, 000000002, 000000002, 000000002, 000000002, 000000012, 717
000001002> 718
 719
<Sig.> 720
 721
<E(h14(S1 of the first Group in Layer 0), bK) = 0xd8e774066f0c4f76cd418caeddef34b8> 722
<E(h14(S1 of the first Group in Layer 1), bK) = 0x10522a5af3137596b028361877ed396e> 723
<E(h14(S1 of the first Group in Layer 2), bK) = 0x6ae668050a20decf917e2fa79c9264eb> 724
 725

… 726
 727
<E(h14(S2 of the first Group in Layer 14), bK) = 0x6800283da05f3729111b44a4fbd9f523> 728
<E(h14(S5 of the second Group in Layer 15), bK) = 0x034e8f0c075d53b854149c0e70e351de>. 729
 730
The following table precisely describes the BKB for Figure 6. 731
 732

Contents Value

BKB length (4 bytes) 440
Structure version (4 bytes) 0
Revocation version (4 bytes) 1
Key check data (16 bytes) 0x826f7c67388c79e6bff174e35cf5307c
Reserved (8 bytes) 0

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 27 of 27

The number of Representative Excluded Leaf Nodes (4 bytes) 1
Excluded Node ID for Layer 0 (8 bits) ||
Excluded Node ID for Layer 1 (8 bits) ||
…
Excluded Node ID for Layer 13 (8 bits) ||
Excluded Node ID for Layer 14 (8 bits) ||
Excluded Node ID for Layer 15 (8 bits)

000000002 ||
000000002 ||
…
000000002 ||
000000012 ||
000001002

Signature (128 bytes)

0x0d571aefb4c3e54852b84435e87b9483
c2134212605556ad46190807a1fecc89
3658934227f51483b09e04a811dbde90
4fabed338d9dd12c88e3d57a68a4d4f8
e9e01d139ea336b87fa6c22d3b401163
b5a14065f612104ebc1296b6fd85f6ee
24c492dddff6b39813c842850265b442
d4b7696c9f0c96a8bc84a119781bb26b

Enc. bK using KEK generated from the Interval in Layer 0 ||
Enc. bK using KEK generated from the Interval in Layer 1 ||
Enc. bK using KEK generated from the Interval in Layer 2 ||
…
Enc. bK using KEK generated from the Interval in Layer 14 ||
Enc. bK using KEK generated from the Interval in Layer 15

0xd8e774066f0c4f76cd418caeddef34b8
0x10522a5af3137596b028361877ed396e
0x6ae668050a20decf917e2fa79c9264eb
…
0x6800283da05f3729111b44a4fbd9f523
0x034e8f0c075d53b854149c0e70e351de

BKB for Figure 6 733

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 28 of 28

Appendix F. Example of KEKs and HNKs 734
The following tables show the KEKs and HNKs of Nodes in Figure 6. 735
 736

Layer KEK

0 0xdac9cce7ff9e4372bd426ab18a016f1d

1 0xcb7c1100ccd4c76fa2656a05a21e34a0

2 0x6c3f2fa0c14a9ec87831e727bc403c4d

… …

14 0x6faab091e96b675602a0c0cffe2cf583

15 0x46c2fed9f61c4d356c484b71a9e71031

KEKs for Figure 6 737

 738

Node

0

S0 0xdbac74b2f6b0af904a53f7c05363a38c

Node

1

S1 0xe4adf64314b08b1350067113705d103d

h15(S1)
0x90188cbde20269797c90e1893a28b207

h15(S2)
0xa2d1b524c7356e276fb993a2565cba96

h14(S2)
0x8169817b6793e46c7c84b3519aea0fc7

h14(S3)
0x57e71046e81b5323028ad6395b30d92d

h13(S3)
0x3273a4e66d7cd36f308d20d9647d04b7

h13(S4)
0x72bad10cdd85e89e3069261dd628ff13

h12(S4)
0xa2b645affea34d89fd4f7cba333b35a6

h12(S5)
0x555282ec0fdcbbe2742e4ae7435abc9d

h11(S5)
0x3eed13dc306e7277eb5f612e7e9dc2bf

h11(S6)
0x29563150af58157dc44efc4fd0872dda

h10(S6)
0x7468a8104b13af91c23a19c3818e966d

h10(S7)
0x69b35dff8ee59f2e88b84ed4d4ca820e

h9(S7)
0xbc1684be93e0d276e6b628c25726c235

h9(S8)
0x3e937b0268b712352cff10da434779f1

h8(S8)
0x20027414391b81fad72ce1c676f1525e

h8(S9)
0x468aeec5bd5788548aed6eea3e5e9c16

h7(S9)
0x4596f7d9bb17bc72e99935d04012b5b5

h7(S10)
0x8f31a7d5bf4e8b5277a4840e83c9e13e

h6(S10)
0x5a13d2f677208bb14960bf6d9f6848ec

h6(S11)
0x8224f94c961b0625647c6b662fdf7759

h5(S11)
0xe97f6c5f026486650d0a890783b960cb

h5(S12)
0x287e0b2e0d0a41e2a722103f15ad7c9f

h4(S12)
0xfd576dcb80bc556208dbb2f567c87fc1

h4(S13)
0x850535954d90c69341f42be1cbb71a6c

h3(S13)
0x9d3d01ddee9c75985b88575624d6a81a

h3(S14)
0x8b0e7f75cbcb707d360d0aef062b30c7

h2(S14)
0x8165298b423fc08d20a5658873ebc1d7

h2(S15)
0xb947538ff3e4a99b8dd1a53253d75196

h1(S15)
0xffff5be2bb242ae55e36638c5b5ecd21

h1(S0)
0xc8cd9a8a63656c2cfa996fe040c28cb5

Node

2

S2 0x4650ee7749a913552b8faee1f4f2de2f

Node
3

S3 0x194271e78523089314abbf02d25612d0

h15(S3)
0x5b8763fe6e45d70ee2b86123e49282b4

h15(S4)
0x4fde45b2ff9dd525c02f69919d27f878

h14(S4)
0xf7c897115fc4835829fdeae2a221fb15

h14(S5)
0x46c2fed9f61c4d356c484b71a9e71031

h13(S5)
0x0e52673d8464ec0c6533af930c49c3f6

h13(S6)
0x9e9263755a9b448c488743e46f9faf05

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 29 of 29

h12(S6)
0x467b1d151508f7688a9deee2506b973b

h12(S7)
0x55dd0167cea89d736b84f7764b63f8bc

h11(S7)
0x7c7546d092264eb476098a38705b4092

h11(S8)
0xa07cb1f096097eb0e25807ab0076671f

h10(S8)
0x050bb39141ff78427e9ca7463923cb5b

h10(S9)
0xa2748f1f0ef1c43bcbbab0a22a96e2b1

h9(S9)
0x29633230d43612eae5100769533848e
9 h9(S10)

0xf8de7bd41f9b1f5c27c5b4117ada7893

h8(S10)
0x78c6bafeb9a29226f7b708bfb57aabbf

h8(S11)
0xd86c7695a6777df9316ceb5101d6b0d9

h7(S11)
0x8a7ad75a7c2e3fa89cdfb797a4404a32

h7(S12)
0x1f9679f9226861587f9180eef024a283

h6(S12)
0xc52b0fe85371aebc61c65c997c9e1653

h6(S13)
0x310b82924a2eef5e598ec61171628d13

h5(S13)
0x8ee6d42698c3ac9ef0eae6d9cf6e7237

h5(S14)
0x8c62decb560b04570b49fa9a2ac1c90d

h4(S14)
0xd63f607a61be6486e148bc7cfb5c2143

h4(S15)
0x12b241b765cb4d32d88f64aa80373fbd

h3(S15)
0xd6396fe03880a961c648df48372a9926

h3(S0)
0xee3da985bc818451f00d0aae830fdac8

h2(S0)
0xca2bb9e33d0fc01bc515e65b6fb35c7b

h2(S1)
0xa335bf0183742b4d5075b62f0cba1662

h1(S1)
0xa46ca30e4e459238ec4c0cda38d98994

h1(S2)
0x57a5431f5d2bdd9f9b881ad4ea9c0b87

Node

4

S4 0x41286cc39e6fca793e948d2dd49bcd63

Node

5

S5 0x763d3f600e0f9627184732ba48d4f246

h15(S5)
0xd5f847e6cb46a1039c91ff605d2f5cde

h15(S6)
0x72c49f72ea3c311b2ab8c03c948555a5

h14(S6)
0xa6bbdfc748829294b660c1389d77a565

h14(S7)
0x16ce4c5745cfff966e2127cd06141690

h13(S7)
0xf6d29d7f030fd2489e60f48a4db67fb6

h13(S8)
0xd3f4d827a3430161ef066f55e4bfb6b6

h12(S8)
0x19d9333d5fb738fa0d66cf447744de09

h12(S9)
0x84692a6782eec6aa6ab0c07f0d0aa8e3

h11(S9)
0xf53af68c4d87bc73f527583ac9d8bfb0

h11(S10
)

0x711173a7e5f65330a3e6e635937cab1f

h10(S10
)

0x08ae3fc80882a7676315b1d7fd79cb75
h10(S11

)

0xd8b44b359715cac912bc227f7ec676e7

h9(S11)
0xb50b707c9d9a8335e6a8e4e8e37f6020

h9(S12)
0x6b40fd0b59642b3b3bb8791f662664b3

h8(S12)
0x4b83ceaef9e752b2972c9f049e88dbb2

h8(S13)
0x9538ef33c3746ff4e8c13fa66bdab443

h7(S13)
0x2385fec2893e79129c2a3225b09013cb

h7(S14)
0x33b3fd6b59613eca90a1dccdea40b26c

h6(S14)
0xed4b31d34daabb119f269a4bcaada007

h6(S15)
0x1bc6ab83c4b855a339f3590ceee9bf07

h5(S15)
0x411de574ff0d9288648ac777f1b617f5

h5(S0)
0xef51a4ab3a3e60bdb083a5e06c88aba8

h4(S0)
0xa9024744e542535292eccb7d06aa9f2d

h4(S1)
0xa27ada71feea8bd3ade55e9bff9f1023

h3(S1)
0xe12ecbb50ead2b5f6daa143b70e13ea5

h3(S2)
0x170be024769b8dd182eff2b81f0c6943

h2(S2)
0x7e4f0703ec05eb080de5dc8e7f77df70

h2(S3)
0xac3106aab96d7507faa557404f5ff173

h1(S3)
0x3bcaad851f6040199957f85d57cb9ce1

h1(S4)
0x0c9b60a6400749cf843d7f687e356549

Node

6

S6 0x98b252651f4c933a9ec1ac2ac470220e

Node
7

S7 0xc3e0a3759d73e22ec6f4c17f9f2cccb6

h15(S7)
0x05cac60d0aa9d3e480b2ea3a4f366e7d

h15(S8)
0x1e51f79c4ad9d9369df059e825c14e76

h14(S8)
0xf32ee24c63435ce8cfd09489f29c3d75

h14(S9)
0x0e806d7779510d0ac84f1018cfd6c998

h13(S9)
0xa97f1689730d077d24aee9ecbee41136

h13(S10
)

0xed44938ecf723e922b9464c1845effa3

h12(S10
)

0xe960fa4b8ddfc1ffcb103051020312c6
h12(S11

)

0xc29e1343ac12fb8c977285a699908086

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 30 of 30

h11(S11
)

0x018a1d95396c6efd6d432fe97e2c9dd9
h11(S12

)

0x1217f4c4ec58680bcb1497532b2d651c

h10(S12
)

0x62e777c4661dce93ef7cc0c880c6fcd8
h10(S13

)

0x84b2fe6310ee8f56351af9dd064a2901

h9(S13)
0xcac0aae64623dcbfa98314487c613931

h9(S14)
0xd5a9de4c00da23022ddaf494381942f7

h8(S14)
0x7a4d4fb9120b9ea0779d319aef45af80

h8(S15)
0x4fd61fbcfe586144c9e680d0cfd58c98

h7(S15)
0x3677a81387170d0a06a88213832beec0

h7(S0)
0x6bd5704bfef8b9d74d8c0d9be0073e18

h6(S0)
0x7b4094b00704f3f4ae339c01083b0704

h6(S1)
0xd9ccad8bab2bd205deb898d515c65008

h5(S1)
0x94f390c2bb59ebb0797fa324cd935ed7

h5(S2)
0xd99f3e85c4b6b38435e6921918927ad2

h4(S2)
0x61b077e95b670289e6145a1ab00c8c56

h4(S3)
0xc0f1a7ad46f36f5c14b50ea82ca5434f

h3(S3)
0x65fac4b6135f7c0134bd51d106d54562

h3(S4)
0x3cfc2a387dbc8638764c6313a0d12865

h2(S4)
0xf7c703aaa21c08440819b949789d4fd0

h2(S5)
0xf8ec1661a6c590b080bdfe764d134298

h1(S5)
0x09fa9b7eae0c2a28f0e8b59568b3de38

h1(S6)
0xf2ba0d7abb0e499f2a0fe3ce3bf61216

Node

8

S8
0x6eea3a5008b1ed3b99ec01ad488910c6

Node

9

S9
0x0d14d39732edabefcd3a1c3ba59b4dcf

h15(S9)
0xc83b2eb193d4571a978f59ac10c4897e

h15(S10)
0x008d9710c5a3e0fa519559fd5b153d9e

h14(S10)
0x852b5a092cf9667ea8c0a7dd0d0a6698

h14(S11)
0xc455a1367b1096f7e3241f4e0c89af96

h13(S11)
0x5ccda2894b01d1898541cad7204421f9

h13(S12)
0xfe00f5cb7ec8924ffbeec54f2f1871ce

h12(S12)
0xf8f898c915416d52dad2c8fe59c7c284

h12(S13)
0x888e5607e99372e52f41a5ac57e96d87

h11(S13)
0x9875de9c19bdb40dd221d2b20d0a35a
7 h11(S14)

0x3035a52c783a746544f35fdd0e1737d5

h10(S14)
0x42cf1b4cd295f3de7bd838bc0d0aac05

h10(S15)
0xd6e05de3a9a970fed7801275c4d3a861

h9(S15)
0x543927a5fb31f0eae20e95d7f85027b6

h9(S0)
0x34ad80aebfa63e0f45b8c33e259518f6

h8(S0)
0xeeeac49a87d206a634ade9e2c757d4fa

h8(S1)
0x2738dbad2137e4782df443571af9d63d

h7(S1)
0x05ceea53b1de391838dd9be0f29932a6

h7(S2)
0x975242671136093d514b396a0174c00
b

h6(S2)
0x1451fb23f09bc2866ea24a4a7e014753

h6(S3)
0x2f8193289e8bfa2972bcbc07fe87146a

h5(S3)
0x18c475931740e719f67ebb1ca328d6ce

h5(S4)
0x63cbe67bd77635b6be2d863d45f70234

h4(S4)
0xdee26daf889159659ba84a93c8625dcb

h4(S5)
0xa0a2595571c2467309a26cbe26b3621c

h3(S5)
0x4eb724dc7f7c751356b547b3d300db97

h3(S6)
0x87c354e3ef2befe9f9e975221d8379dd

h2(S6)
0x296640dc33e0279cdd5f0e55a75e1865

h2(S7)
0x9facf07289ef874cc8d8c9b57182ed97

h1(S7)
0xd0af18eccad22d44a3f4ce8b28e650aa

h1(S8)
0x466210ba9b30a0270659b5ae8238757
8

Node

10

S10
0xdf17d7682b6c261c86cce03f758430d5

Node
11

S11
0x10b6a7c540b6b9884938ba2b9733643f

h15(S11)
0x351a8b582990c0a716c9949d849c76c9

h15(S12)
0xfc76d66ba44a52d6a63e42921d89cbeb

h14(S12)
0x347ba1ecc6a30973b2d129483c18be09

h14(S13)
0x38eb321360043410cb356899949f03a3

h13(S13)
0xba82da66de5f3c0f3bf9f41150ec7025

h13(S14)
0xf02a804b8b39f4ac5ec6d103975be197

h12(S14)
0xb2a21f19a6faa60d71b6b2952adc0fd7

h12(S15)
0x40971c1b1275e8cd25d845ef779a16d6

h11(S15)
0x1431641d5102ce8e4fc52e559a0d0a64

h11(S0)
0x1ad4d1feadacbf96fadd3103bac5d3b8

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 31 of 31

h10(S0)
0x9a209abd294cba104eaec2f9db52a57d

h10(S1)
0xfb50cdbc01625c5c65ce7d180d8139e4

h9(S1)
0x42836bf3a6c76114ba7fd0bacc775aba

h9(S2)
0xb3e6b8aa8f10291d8ac1b4676b0be84e

h8(S2)
0x37403a25da8ddda557c8331095ff2f55

h8(S3)
0x6e7f4ab49f3cdd72d2cb8af1cfe99001

h7(S3)
0x174285db25af70092c803844121d7022

h7(S4)
0x034730b93d1d90c33bf1e4f5f45e14a0

h6(S4)
0xf99dcc18830b215e0430a85d61e8be7f

h6(S5)
0x3660577d8bb6769198976d2ae1a24d8
5

h5(S5)
0xd9518cc6153eb1d5765cc0df27dca07b

h5(S6)
0x0f7af0071b7f9badb009020df2256679

h4(S6)
0x4e3e2873bdfd40ed81ee2dbcf51b98a3

h4(S7)
0xc9f59569b06d3c6da4835707205bfb1e

h3(S7)
0x59aafcfc9c84c71c07f68cdbf6f9a68b

h3(S8)
0x2f68278e612b0245e3c6cbd848b4a717

h2(S8)
0xb0737c4ac32081a2a4760b755ea3a577

h2(S9)
0x283d3414c1579a4dccdb6f2eaf3e3fbc

h1(S9)
0xb808d53746fec97ff9d55c8f4e17546b

h1(S10)
0xc4ec264457131fdd8649ebd312642aa5

Node

12

S12
0x53a1bb5395c8ba204c7c54bb9588d2b9

Node

13

S13
0xd75be0f958874805f4813f1980f2c853

h15(S13)
0x0d2330ff3cb698571ca0c45f6a453d33

h15(S14)
0x9a09cac050b6b831c281c519571695ba

h14(S14)
0x216d9f32a41f462926d1142d3f8511e3

h14(S15)
0xc3e067f530d76362626f3c2f1ba61538

h13(S15)
0x8d44b1cbeb059fbcfb52e32573d4878f

h13(S0)
0xd70ccddca7723bc802dbc68e8d1120aa

h12(S0)
0x187698d2a1a51e45289fce30b97b4f1f

h12(S1)
0x7f607e8fde22c21bb59357573bd741ab

h11(S1)
0x1e67307c8eacb60ffa10642261710c12

h11(S2)
0x7d5ca7742ae469d73e3bcb414f259f1f

h10(S2)
0xbcdc4759b58890a6e581ec606f8bf857

h10(S3)
0xefe666b75bbd6a16e9ac18691a09b523

h9(S3)
0x22fa6431425c86039ed3a13fb0ed02c4

h9(S4)
0x9438ca590e95066d80229039a388d70
1

h8(S4)
0x6526295bd297ff53b82bd120f981a3bf

h8(S5)
0xb77e64f18dfa12af37e540b0b0d5804a

h7(S5)
0x66ec769561b32dfb0d0a237c11d8d1a6

h7(S6)
0x3b53fe08fead281ccd89e902e6e99e5a

h6(S6)
0x25669fa6b435b22538eb43ab5b8b4973

h6(S7)
0xb8db60c88e1869c65bc02688835fb75c

h5(S7)
0x7a147f678dc3a4b3ff81d8cbf7057178

h5(S8)
0xa16fe2cb7c04e2aefdf6cca54dd48813

h4(S8)
0xed7fc773829584dd897d4740d95df584

h4(S9)
0x102b534e39773dbb3ea07c194ec261d7

h3(S9)
0x89f31b08ae95df212f93529bead067b9

h3(S10)
0x525e35cf012ce90e3a661f0d0a300587

h2(S10)
0x8d84c4d691b7919c5366f2047ed99925

h2(S11)
0x41bdfbb44fa6e9301a096f724f19e827

h1(S11)
0x3d06177da437d89c0830bc357b0ec3f7

h1(S12)
0x497cf3175687963a90cc1c9c06c1a61e

Node

14

S14
0xf7fc4f5543043f2dbaa1028931b9ff4f

Node
15

S15
0x2a120f7f674faf037008c33699937ed1

h15(S15)
0xb446982e529cbdfe277d31921a5c0c07

h15(S0)
0x4662a8838ed854322db7fd21e9314bde

h14(S0)
0xc93d26cea5bfee515f0f63b22f9f48ef

h14(S1)
0x7022747f593ddbdcd135c8c9dce7159c

h13(S1)
0xde957246edd618cdab294d26c5ef78ce

h13(S2)
0x4476bc2b321bffeae59648a88cd8b50e

h12(S2)
0x54dc84e1909a21419a0559a27ab8d84c

h12(S3)
0x18cd42d33db9f9ce92a98db4762c647b

h11(S3)
0x3b1469d75238c2a029ac1c8ff858ceef

h11(S4)
0x13e62a8742e8d8956745f221139d763b

h10(S4)
0x621a29c7a8ddf6022c37ebb4c3f6cac2

h10(S5)
0x378d5aecba882a6d5d949550a4b1de1
b

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 32 of 32

h9(S5)
0x6912cfa082d8c5210e6d9829de389f94

h9(S6)
0x35aa71ce07183502aaa3b23219ac9ca7

h8(S6)
0x97e89cc634175f76a6c4e6d46180e3b8

h8(S7)
0xd45f04aa8d43a9fcf0f7d0c5e5552792

h7(S7)
0x69049052c24be208cb8618ff47360601

h7(S8)
0x4a7c81a8d714c611e9f9dc1322fbbbe1

h6(S8)
0x86882346368fc83683a5cdd687224b40

h6(S9)
0xa885a9de941370fa424a9ee4b9f729a6

h5(S9)
0x043301c76b55b0c8c435c560b64fc67c

h5(S10)
0x26b4efc68d3c45e0f9ead39313da68f5

h4(S10)
0xd16e14aed7b3d7fe7e78c7e6231a985a

h4(S11)
0x48a9b84246019c7d6c48ccde9324c9d3

h3(S11)
0x11e2c396db87113aa7ae0c774f86b525

h3(S12)
0xf50321a152619a7dcde88c2b1a0e130b

h2(S12)
0x6ecee1780d3b715606e9d2760d0a1e5
5 h2(S13)

0x50db026d1e70c18549fc4f1c629f3936

h1(S13)
0x09731833959edb527648f98b3961bf9b

h1(S14)
0xd3983f880c2543beed0c1b85bc0eb6db

HNKs of Node 0 ~ Node 15 of the second Group in Layer 15 739

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 33 of 33

Appendix G. Pseudocode for bK Extraction 740
The following pseudocode is an example showing how a Node extracts a Broadcast Key 741
bK from a BKB it receives.The Node refers to the BKB in order to determine which key in 742
its HBES Node Key Set or in one of its ancestor’s HBES Node Key Sets it can use in 743
order to calculate one of the KEKs used to encrypt the Broadcast Key. It then uses the 744
KEK to decrypt the encryption that was a result of encrypting the bK using that KEK, and 745
the result of the decryption is the bK. 746
// Start 747
Read (nr = # of Excluded Nodes) 748
start = 0 749
end = nr 750
nKEK = 0 // Location of KEK for the Node 751
 752
for (i = 0 ; i < 16 ; i++) { 753
 npid = the ith left most 4 bits of devid 754
 prev_tag = -1 755

CountKEK (0 , start) // Count Intervals in Groups not containing the Node or its 756
Ancestor Node 757

match = 0 // 1 if npid == the right most 4 bits of curr_tag 758
for (j = start ; j < end ; j++) { 759
 curr_tag = the jth left most 8 bits in the list for Layer i 760
 // Find both start point and end point of the corresponding Group for the Node 761

 if (match == 0 AND npid == the rightmost 4 bits of curr_tag) { 762
 match = 1 763

 start = j 764
 end = start - 1 765
 } 766
 if (match == 1 AND npid == the rightmost 4 bits of curr_tag) end++ 767
 // Count Intervals in Group containing the Node or its Ancestor Node. 768
 // And, if the Node is in this Interval, this algorithm is terminated. 769
 if (Interval exists between curr_tag and prev_tag) { 770
 nKEK++ 771
 if (npid in the Interval) { 772
 Find KEK for the Node using curr_tag and prev_tag 773
 Return bK = Decrypt (nKEKth encrypted bK with the found KEK) 774
 } 775
 } 776
 prev_tag = curr_tag 777

} 778
 CountKEK (end , nr) // Count Intervals in Groups not containing the Node or its Ancestor 779
Node 780

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 34 of 34

} 781
//End 782
CountKEK (S , E) 783
//Start 784
for (j = S ; j < E ; j++) { 785

curr_tag = the jth leftmost 8 bits in the list for Layer i 786
// If the leftmost 4 bits (the gid) of both prev_tag and curr_tag are equal, the two Nodes 787
// are in the same Group. Then, check there exists a jump (Interval) between the rightmost 788
// 4 bits (the npid) of both prev_tag and curr_tag. If there exists not only an Interval 789
// containing Node 0, but also an Interval containing Node 15 in one Group, then those are the 790
same Interval. 791
 if ((gid of curr_tag != 11112) AND (Interval exists between curr_tag and prev_tag)) 792
nKEK++ 793
 prev_tag = curr_tag 794
} 795
//End 796

Copyright (c) Marlin Developer Community, 2003-2009. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 35 of 35

Appendix H. Starfish XML Schema 797
<?xml version="1.0" encoding="UTF-8"?> 798
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 799
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 800
 targetNamespace="http://marlin-drm.com/starfish/1.2" 801
 elementFormDefault="qualified" 802
 attributeFormDefault="unqualified" 803
 xmlns="http://marlin-drm.com/starfish/1.2"> 804
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#" 805
 schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-806
schema.xsd"/> 807
 <xs:element name="BroadcastKeyBlock" type="BroadcastKeyBlockType"/> 808
 <xs:element name="RevocationInformation" type="RevocationInformationType"/> 809
 <xs:complexType name="BroadcastKeyBlockType"> 810
 <xs:sequence> 811
 <xs:element ref="RevocationInformation"/> 812
 <xs:element name="EncryptedBroadcastKeys" type="xs:base64Binary"/> 813
 <xs:element ref="ds:Signature"/> 814
 </xs:sequence> 815
 <xs:attribute name="keyTreeName" type="xs:anyURI" use="required"/> 816
 </xs:complexType> 817
 <xs:complexType name="RevocationInformationType"> 818
 <xs:simpleContent> 819
 <xs:extension base="xs:base64Binary"> 820
 <xs:attribute name="structureVersion" type="xs:unsignedInt" use="required"/> 821
 <xs:attribute name="revocationVersion" type="xs:unsignedInt" use="required"/> 822
 <xs:attribute name="distributionURIs" use="required"> 823
 <xs:simpleType> 824
 <xs:list itemType="xs:anyURI"/> 825
 </xs:simpleType> 826
 </xs:attribute> 827
 <xs:attribute name="issuedOn" type="xs:dateTime" use="required"/> 828
 <xs:attribute name="nextUpdate" type="xs:dateTime" use="required"/> 829
 <xs:attribute name="ID" type="xs:ID" use="required"/> 830
 </xs:extension> 831
 </xs:simpleContent> 832
 </xs:complexType> 833
</xs:schema> 834
 835

	Starfish
	Version 1.2
	Final
	Contents
	Introduction
	Goal and Scope
	Document Organization
	Conformance Conventions
	Namespaces and Identifiers
	Namespaces and Notation

	Abbreviations
	Terms and Definitions
	Starfish Values
	References

	Goals
	HBES Architecture
	Overview
	Initial Configuration
	Tree structure
	Node Path IDs and Device IDs

	Key Generation and Pre-distribution
	Key Assignment
	Device Key Set

	Node Exclusion

	BKB Encoding
	BKB Fields
	Binary BKB Encoding
	Bit/Byte ordering
	Binary BKB Format

	XML BKB Encoding
	<sf:BroadcastKeyBlock> Element
	keyTreeName Attribute
	<sf:RevocationInformation> Element
	structureVersion Attribute
	revocationVersion Attribute
	distributionURIs Attribute
	issuedOn Attribute
	nextUpdate Attribute

	<sf:EncryptedBroadcastKeys> Element
	<ds:Signature> Element
	<ds:SignedInfo>
	<ds:CanonicalizationMethod>
	<ds:SignatureMethod>
	<ds:Reference>

	<ds:SignatureValue>
	<ds:KeyInfo>

	Hash algorithm: HBES SHA-1
	An Example HBES Key Tree (HKT)
	An Example HBES Node Key Set (HNK)
	Example of Exclusion
	D.1. Determining the KEKs in one Group
	D.2. The List of Excluded Node IDs

	BKB Example
	Example of KEKs and HNKs
	Pseudocode for bK Extraction
	Starfish XML Schema

