

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

 1

 2

 3

 4

 5

 6

Octopus DRM Technology Platform 7

Specifications 8
Version 1.0.3 9
Final 10

 11

 12

 13

 14

 15

 16

 17
Source Marlin Developer Community
Date February 3, 2010

 18

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 2 of 91

Notice 19

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO REPRESENTATION OR 20
WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE COMPLETENESS, 21
ACCURACY, OR APPLICABILITY OF ANY INFORMATION CONTAINED IN 22
THIS DOCUMENT. THE MARLIN DEVELOPER COMMUNITY (“MDC”) ON 23
BEHALF OF ITSELF AND ITS PARTICIPANTS (COLLECTIVELY, THE 24
"PARTIES") DISCLAIM ALL LIABILITY OF ANY KIND WHATSOEVER, 25
EXPRESS OR IMPLIED, ARISING OR RESULTING FROM THE RELIANCE OR 26
USE BY ANY PARTY OF THIS DOCUMENT OR ANY INFORMATION 27
CONTAINED HEREIN. THE PARTIES COLLECTIVELY AND INDIVIDUALLY 28
MAKE NO REPRESENTATIONS CONCERNING THE APPLICABILITY OF ANY 29
PATENT, COPYRIGHT (OTHER THAN THE COPYRIGHT TO THE 30
DOCUMENT DESCRIBED BELOW) OR OTHER PROPRIETARY RIGHT OF 31
THIS DOCUMENT OR ITS USE, AND THE RECEIPT OR ANY USE OF THIS 32
DOCUMENT OR ITS CONTENTS DOES NOT IN ANY WAY CREATE BY 33
IMPLICATION, ESTOPPEL OR OTHERWISE, ANY LICENSE OR RIGHT TO 34
OR UNDER ANY PATENT, COPYRIGHT, TRADEMARK OR TRADE SECRET 35
RIGHTS WHICH ARE OR MAY BE ASSOCIATED WITH THE IDEAS, 36
TECHNIQUES, CONCEPTS OR EXPRESSIONS CONTAINED HEREIN. 37

Use of this document is subject to the agreement executed between you and the 38
Parties, if any. 39

Any copyright notices shall not be removed, varied, or denigrated in any manner. 40

Copyright © 2003 - 2010 by MDC, 415-112 North Mary Avenue #383 Sunnyvale, 41
CA 94085, USA. All rights reserved. Third-party brands and names are the 42
property of their respective owners. 43

Intellectual Property 44

A commercial implementation of this specification requires a license from the 45
Marlin Trust Management Organization. 46

Contact Information 47

Feedback on this specification should be addressed to: 48
editor@marlin-community.com 49

Contact information for t stop he Marlin Trust Management Organization can be 50
found at: http://www.marlin-trust.com/ 51

52

mailto:editor@marlin-community.com�
http://www.marlin-trust.com/�

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 3 of 91

Table of Contents 53

1 Introduction .. 7 54
1.1 Definitions, Acronyms and Abbreviations ... 8 55
1.2 Conformance Conventions .. 8 56

2 Octopus Objects .. 9 57
2.1 Introduction .. 9 58
2.2 Content Protection and Governance Objects .. 9 59

2.2.1 Common Elements .. 10 60
2.2.1.1 IDs .. 10 61
2.2.1.2 Attributes .. 10 62
2.2.1.3 Extensions ... 10 63

2.2.2 Content .. 10 64
2.2.3 ContentKey ... 11 65
2.2.4 Protector .. 11 66
2.2.5 Control .. 11 67
2.2.6 Controller .. 11 68

2.2.6.1 Symmetric Key Signature ... 12 69
2.2.6.2 Public Key Signature .. 12 70

2.3 Rule Conditions, Identity and Key Management Objects .. 13 71
2.3.1 Node .. 14 72
2.3.2 Link ... 14 73

2.4 Data Structures ... 14 74
2.4.1 Common Structures ... 16 75

2.4.1.1 Attributes .. 16 76
2.4.1.2 Extensions ... 16 77

2.4.2 Node Objects ... 17 78
2.4.3 Link Objects .. 17 79
2.4.4 Control Objects ... 17 80
2.4.5 ContentKey Objects .. 17 81
2.4.6 Controller Objects ... 18 82
2.4.7 Protector Objects ... 18 83

3 Octopus Controls .. 19 84
3.1 Introduction .. 19 85
3.2 Control Programs ... 19 86

3.2.1 Naming Conventions ... 19 87
3.2.2 Interface to Control Programs ... 19 88

3.2.2.1 Control Loading .. 20 89
3.2.2.2 Atomicity .. 20 90

3.2.3 Control Protocol .. 20 91
3.2.4 Byte Code Type .. 21 92
3.2.5 General Control Routines .. 21 93

3.2.5.1 Control.Init ... 21 94
3.2.5.2 Control.Describe ... 21 95
3.2.5.3 Control.Release .. 22 96

3.2.6 Action Routines ... 22 97

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 4 of 91

3.2.6.1 Control.Actions.<Action>.Init .. 22 98
3.2.6.2 Control.Actions.<Action>.Check ... 22 99
3.2.6.3 Control.Actions.<Action>.Perform .. 23 100
3.2.6.4 Control.Actions.<Action>.Describe ... 23 101
3.2.6.5 Control.Actions.<Action>.Release ... 24 102

3.2.7 Link Constraint Routines ... 24 103
3.2.7.1 Control.Link.Constraint.Init ... 24 104
3.2.7.2 Control.Link.Constraint.Check ... 24 105
3.2.7.3 Control.Link.Constraint.Describe ... 25 106
3.2.7.4 Control.Link.Constraint.Release ... 25 107

3.2.8 Agent Routines .. 26 108
3.2.8.1 Control.Agents.<Agent>.Init .. 26 109
3.2.8.2 Control.Agents.<Agent>.Run ... 26 110
3.2.8.3 Control.Agents.<Agent>.Describe.. 27 111
3.2.8.4 Control.Agents.<Agent>.Release ... 27 112

3.3 Extended Status Blocks .. 27 113
3.3.1 Global Flags .. 27 114
3.3.2 Categories ... 28 115

3.3.2.1 Check and Perform Routines for Actions ... 28 116
3.3.2.2 Describe Routines ... 29 117
3.3.2.3 Link Constraint Routines .. 29 118

3.3.3 Cache Durations .. 30 119
3.3.4 Parameters ... 30 120

3.3.4.1 Description ... 31 121
3.3.4.2 Constraints .. 31 122
3.3.4.3 Parameter Flags .. 34 123

3.4 Obligations and Callbacks ... 34 124
3.4.1 Parameters ... 35 125

3.4.1.1 Obligations ... 35 126
3.4.1.2 Callbacks .. 36 127
3.4.1.3 Parameter Flags .. 39 128

3.4.2 Events .. 39 129
3.4.3 Callback Routines ... 40 130

3.4.3.1 CONTINUE Callbacks ... 41 131
3.4.3.2 RESET Callbacks ... 41 132

3.5 Metadata Resources ... 42 133
3.5.1 Simple Text ... 43 134
3.5.2 Text Templates .. 43 135

3.5.2.1 Formatting .. 43 136
3.6 Context Objects .. 44 137

3.6.1 General Context .. 44 138
3.6.2 Runtime Context ... 45 139
3.6.3 Control Context ... 45 140
3.6.4 Controller Context ... 45 141
3.6.5 Action Context .. 46 142
3.6.6 Link Context.. 46 143
3.6.7 Agent Context ... 46 144

3.7 Actions ... 47 145
3.7.1 Play ... 47 146
3.7.2 Transfer ... 47 147
3.7.3 Export .. 48 148

3.7.3.1 Standard Target Systems .. 49 149

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 5 of 91

4 Plankton Virtual Machine ... 50 150
4.1 Introduction .. 50 151
4.2 Design Rationale ... 50 152
4.3 Architecture .. 50 153
4.4 Basic VM Elements .. 51 154

4.4.1 Execution Model ... 51 155
4.4.2 Memory Model ... 51 156
4.4.3 Data Stack ... 51 157
4.4.4 Call Stack .. 52 158
4.4.5 Pseudo-registers .. 52 159
4.4.6 Memory Map ... 52 160

4.4.6.1 Data Memory .. 52 161
4.4.6.2 Code Memory ... 53 162

4.4.7 Executing Routines ... 53 163
4.4.8 Runtime Exceptions .. 53 164

4.5 Instruction Set .. 54 165
4.6 Code Modules ... 56 166

4.6.1 Module Format .. 56 167
4.6.2 pkCM Atom .. 57 168
4.6.3 pkDS Atom ... 57 169
4.6.4 pkCS Atom .. 57 170
4.6.5 pkEX Atom ... 57 171
4.6.6 pkRQ Atom ... 58 172
4.6.7 Module Loader .. 58 173

4.7 System Calls .. 59 174
4.7.1 System Call Numbers Allocation .. 59 175
4.7.2 Standard System Calls ... 59 176

4.7.2.1 System.NoOperation ... 60 177
4.7.2.2 System.DebugPrint ... 60 178
4.7.2.3 System.FindSystemCallByName .. 60 179
4.7.2.4 System.Host.GetLocalTime .. 61 180
4.7.2.5 System.Host.GetLocalTimeOffset .. 61 181
4.7.2.6 System.Host.GetTrustedTime ... 61 182
4.7.2.7 System.Host.GetObject ... 62 183
4.7.2.8 System.Host.SetObject ... 65 184
4.7.2.9 Octopus.Links.IsNodeReachable .. 66 185
4.7.2.10 System.Host.SpawnVm .. 67 186
4.7.2.11 System.Host.CallVm .. 68 187
4.7.2.12 System.Host.ReleaseVm ... 70 188

4.7.3 Standard Data Structures ... 70 189
4.7.3.1 Standard Parameters ... 71 190
4.7.3.2 Standard Extended Status Block ... 73 191

4.7.4 Standard Result Codes .. 74 192

5 Octopus Object Serialization .. 75 193
5.1 Introduction .. 75 194
5.2 Canonical Byte Sequence Algorithm .. 75 195

5.2.1 Simple Types ... 75 196
5.2.2 Compound Types .. 75 197
5.2.3 Encoding Rules ... 75 198

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 6 of 91

5.3 Application to Octopus Objects .. 77 199
5.3.1 Attributes ... 77 200
5.3.2 Extensions ... 77 201
5.3.3 Controller .. 77 202
5.3.4 ScubaKeys ... 77 203

5.4 Example ... 77 204

6 Scuba Key Distribution .. 79 205
6.1 Introduction .. 79 206
6.2 Nodes, Entities and Scuba Keys .. 79 207

6.2.1 Entities .. 79 208
6.2.2 Nodes .. 79 209

6.2.2.1 Sharing Keys ... 80 210
6.2.2.2 Confidentiality Keys ... 80 211

6.3 Cryptographic Elements .. 81 212
6.4 Binding of Content Keys .. 81 213
6.5 Derivation of Scuba Keys using Links ... 82 214
6.6 Data Structures ... 83 215

6.6.1 ScubaKeys ... 83 216
6.7 Signatures and Flags .. 84 217

7 SeaShell Object Store ... 85 218
7.1 Introduction .. 85 219
7.2 Database Objects .. 85 220

7.2.1 Object Metadata .. 85 221
7.2.1.1 Flags ... 86 222

7.2.2 Object Types ... 86 223
7.2.2.1 String .. 86 224
7.2.2.2 Integer ... 86 225
7.2.2.3 Byte Array .. 86 226
7.2.2.4 Container .. 86 227

7.3 Object Lifetime ... 86 228
7.3.1 Explicit Object Destruction ... 87 229
7.3.2 Implicit Object Destruction ... 87 230
7.3.3 Garbage Collection ... 87 231

7.4 Object Access .. 87 232
7.4.1 Reading Objects .. 87 233
7.4.2 Creating Objects .. 88 234
7.4.3 Writing Objects ... 88 235
7.4.4 Destroying Objects .. 88 236
7.4.5 Object Metadata .. 88 237

7.5 Object Ownership and Access Control .. 89 238

8 References ... 91 239

 240

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 7 of 91

1 Introduction 241

This document contains the Octopus DRM technology platform specifications. 242

Please note: This document consolidates material that was previously in separate documents. The 243
highest version number among the source documents consolidated into this document was 1.0.2. 244
The version number for this document is initially one greater than that in the third digit, that is, 245
1.0.3. 246

Octopus is a general-purpose DRM architecture that can be applied to a variety of applications 247
ranging from enterprise document control to medical record privacy protection, consumer media 248
copyright protection, or any other system requiring distributed governance and control of 249
information. At the center of an Octopus system is an Octopus DRM Engine—a small, 250
lightweight component responsible for determining whether access to content should be granted 251
in a given set of conditions. By itself, Octopus is entirely agnostic regarding content formats, 252
hardware/software platforms, and business semantics. That is, the Octopus DRM Engine 253
responsible for governing access to content is entirely unaware of the type of content it protects, 254
and is not bound by a particular set of semantics (e.g., not limited by predefined meanings or 255
hard-coded “rules languages”). 256

One of the distinguishing features of an Octopus-based system is its ability to separate the 257
protection of content from the governance of that content. This allows, among other benefits, the 258
ability to issue rights to access content separately from information that governs where or when it 259
can be used. This enables great end-user flexibility; for example, a service provider can issue 260
rights to a customer to use content, but can allow that customer to independently manage which 261
devices he or she would like to use that content on at any particular moment. 262

There are six Octopus specifications, all of which are defined in this document: 263

1. Octopus Objects (see §2) 264

This specification describes the basic objects that are the building blocks of Octopus. It 265
first shows the high-level view of which types of objects Octopus uses for content 266
protection and governance, and how they relate to one another, followed by a more 267
detailed description of those objects and the information they convey. It then describes 268
the objects used for Rules Conditions, Identity and Key Management. 269

2. Octopus Controls (§3) 270

This specification describes the Control objects in detail. Control objects can be used to 271
represent rules that govern access to content by granting or denying the use of the 272
ContentKey objects they control. They can also be used to limit the validity of a Link 273
object in which they are embedded. This specification defines which actions the 274
application can perform on the content, which action parameters should be supplied to 275
the control program, and how the control program encodes the return status indicating 276
that the requested action can or cannot be performed. 277

3. Plankton Virtual Machine (§4) 278

This specification defines Plankton, the virtual machine (VM) used by the Octopus 279
Engine to execute control programs that govern access to content. It is used by the DRM 280
Client Engine to execute control programs. 281

4. Octopus Object Serialization (§5) 282

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 8 of 91

This specification defines an encoding-neutral way of computing a canonical byte 283
sequence for Octopus objects. The purpose of this canonical byte sequence is the 284
computation of a digest for the digital signature of objects. 285

5. Scuba Key Distribution (§6) 286

This specification defines Scuba, a key distribution system that has been designed to fit 287
very naturally within the Octopus architecture. The basic principle behind Scuba is to 288
use the Octopus Link objects to distribute keys, in addition to their primary purpose of 289
establishing relationships between Node objects. An Octopus Control object contains a 290
control program that decides whether or not a requested action should be granted. That 291
control program often checks that a specific Octopus Node is reachable via a collection 292
of Octopus Links. Scuba makes it possible to take advantage of the existence of that 293
collection of Links to facilitate the distribution of a key such that it is available to the 294
Octopus Engine that is executing the control. 295

6. SeaShell Object Store (§7) 296

This specification defines a secure Object Store that can be used by Octopus Engine 297
implementations to provide a secure state storage mechanism. Such a facility is useful to 298
enable control programs to read and write in a protected state database that is persistent 299
from invocation to invocation. 300

The final section of this document, §8, provides a table with complete references for the external 301
documents referred to within this document. 302

1.1 Definitions, Acronyms and Abbreviations 303

byte 8-bit value, or octet

byte code Stream of bytes that encode executable instructions and their operands

DRM Digital Rights Management

ESB Extended Status Block, as defined in §4.7.3.2

LSB Least Significant Bit

EC Program Counter

SP Stack Pointer

UTC Coordinated Universal Time

VM Virtual Machine

1.2 Conformance Conventions 304

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 305
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this 306
specification are to be interpreted as described in IETF RFC 2119 [RFC2119]. 307

 308

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 9 of 91

2 Octopus Objects 309

2.1 Introduction 310

This section contains the Octopus Objects specification, which describes the basic objects that 311
are the building blocks of Octopus. We first show the high-level view of which types of objects 312
Octopus uses for content protection and governance, and how they relate to one another, 313
followed by a more detailed description of those objects and the information they convey. We 314
then describe the objects used for Rules Conditions, Identity and Key Management. 315

This specification defines the object model, but not the encoding of the objects. The data 316
structures defined in §2.4 are designed to be encoded or serialized according to one or more 317
schemas that may be defined in other specifications. Likewise, the algorithms and encodings 318
used for signing and encrypting object data are also not defined by this specification. 319

2.2 Content Protection and Governance Objects 320

The content governance objects are the objects that are used to protect content and associate 321
usage rules (controls) to protected content. Together, those objects form what is referred to as a 322
‘license’. 323

 324

The data represented by the Content object are encrypted by a key. That key is represented by a 325
ContentKey object, and the binding between the content and the key used to encrypt it is 326
represented by the Protector object. The rules that govern the use of the key to decrypt the 327
content are represented by the Control object, and the binding between the ContentKey and the 328
Control used to govern its use is represented by the Controller object. All compliant systems 329

Content ContentKey Control

Protector

ID ID ID Encrypted Key
Data

Control Byte
Code

Content Ref ContentKey
Ref

Controller
ContentKey Ref Control Ref

Encrypted
Content

 = Signed

1+

1+

Digest Digest

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 10 of 91

SHALL only make use of the content decryption key under governance of the rules expressed by 330
the byte code in the Control object. 331

2.2.1 Common Elements 332

All Octopus objects share common basic traits: they can each have an ID, a list of attributes, and 333
a list of extensions. 334

2.2.1.1 IDs 335

All objects that are referenced by other objects have a unique ID. IDs are simply URIs, and the 336
convention in Octopus is that those URIs are URNs. 337

2.2.1.2 Attributes 338

Attributes are typed values. Attributes can be named or unnamed. The name of a named attribute 339
is a simple string or URI. The value of an attribute is of a simple type (string, integer and bytes) 340
or a compound type (list and array). Attributes of type ‘list’ contain an unordered list of named 341
attributes. Attributes of type ‘array’ contain an ordered array of unnamed attributes. 342

An object’s ‘attributes’ field is a (possibly empty) unordered collection of named attributes. 343

2.2.1.3 Extensions 344

Extensions are elements that can be added to objects to carry optional or mandatory extra data. 345
Extensions are typed, and have unique IDs. Extensions can be internal or external. 346

2.2.1.3.1 Internal Extensions 347

Internal extensions are contained in the object they extend. They have a ‘critical’ flag that 348
indicates whether the specific extension data type for the extension is required to be known to the 349
implementation that uses the object. If an implementation encounters an object with a critical 350
extension with a data type that it does not understand, it MUST reject the entire object. 351

The ID of an internal extension MUST be locally unique: an object cannot contain two 352
extensions with the same ID, but it is possible that two different objects each contain an 353
extension with the same ID as that of an extension of the other object. 354

An object’s ‘extensions’ field is a (possibly empty) unordered collection of internal extensions. 355

2.2.1.3.2 External Extensions 356

External extensions are not contained in the object they extend. They appear independently of 357
the object, and have a ‘subject’ field that contains the ID of the object they extend. 358

The ID of an external extension MUST be globally unique. 359

2.2.2 Content 360

The Content object is an “external” object. Its format and storage are not under the control of 361
Octopus, but rather under the control of the content management subsystem of the host 362
application. (For instance, it could be an MP4 movie file, an MP3 music track, etc.) The format 363
for the content needs to provide support for associating an ID with the content payload data. The 364

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 11 of 91

content payload is encrypted in a format-dependent manner (typically with a symmetric cipher, 365
such as AES). 366

2.2.3 ContentKey 367

The ContentKey object represents a unique encryption key, and associates an ID with it. The 368
purpose of the ID is to enable Protector objects and Controller objects to make references to 369
ContentKey objects. The actual key data encapsulated in the ContentKey object is itself 370
encrypted so that it can only be read by the recipients that are authorized to decrypt the content. 371
The ContentKey object specifies which cryptosystem was used to encrypt the key data. The 372
cryptosystem used to protect the content key data is called the Key Distribution System. 373
Different Key Distribution Systems can be used. An example of a Key Distribution System is the 374
Scuba Key Distribution System, described in §6. 375

2.2.4 Protector 376

The Protector object contains the information that makes it possible to find out which key was 377
used to encrypt the data of Content objects. It also contains information about which encryption 378
algorithm was used to encrypt that data. The Protector object contains one or more IDs that are 379
references to Content objects, and exactly one ID that is a reference to the ContentKey object 380
that represents the key that was used to encrypt the data. If the Protector points to more than one 381
Content object, all those Content objects represent data that has been encrypted using the same 382
encryption algorithm and the same key. Unless the cryptosystem used allows a safe way of using 383
the same key for different data items, it is NOT RECOMMENDED that a Protector object point 384
to more than one Content object. 385

2.2.5 Control 386

The Control object contains the information that allows Octopus to make decisions regarding 387
whether certain actions on content should be permitted when requested by the host application. 388
The rules that govern the use of content keys are encoded in the Control object as Plankton byte 389
code. (See §4 for the Plankton Virtual Machine specification.) The Control object also has a 390
unique ID so that it can be referenced by a Controller object. Control objects MUST be signed, 391
so that Octopus can verify that the control byte code is valid and trusted before it is used to make 392
any decisions. A signature of a Control is either direct or indirect. A direct signature is a 393
signature of a Control object itself. An indirect signature exists when a signed Controller object 394
has a reference to a Control. (In this case, the ControlRef field of the Controller object contains a 395
digest of the Control object.) 396

2.2.6 Controller 397

The Controller object contains the information that allows Octopus to find out which Control 398
governs the use of one or more keys represented by ContentKey objects. It contains information 399
that binds it to the ContentKey objects and the Control object that it references. Controller 400
objects MUST be signed, so that the validity of the binding between the ContentKey and the 401
Control object that governs it, as well as the validity of the binding between the ContentKey ID 402
and the actual key data, can be established. A signature of the Controller object can be a public 403
key signature or a symmetric key signature, or a combination of both. Also, when the digest of 404
the Control object referenced by the Controller object is included in the Controller object, the 405
validity of the Control object can be derived without having to separately verify the signature of 406
the Control object. 407

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 12 of 91

2.2.6.1 Symmetric Key Signature 408

This is the most common type of signature for Controller objects. This type of signature is 409
implemented by computing a MAC (Message Authentication Code) of the Controller object, 410
keyed with the content key, that is, the same key as the key represented by the ContentKey 411
object. The canonical method for this MAC is to use HMAC with the same hashing algorithm(s) 412
as the one(s) chosen for the crypto algorithms used in the same Octopus deployment. There 413
MUST be one symmetric key signature of a Controller object for each ContentKey object 414
referenced by that Controller. 415

2.2.6.2 Public Key Signature 416

This type of signature is used when the identity of the signer of the Controller object needs to be 417
known. This type of signature is implemented with a public key signature algorithm, signing with 418
the private key of the principal who is asserting the validity of this object. When using this type 419
of signature, a symmetric key signature SHALL also be present, and it SHALL sign both the 420
Controller object and the public key signature, so that it can be guaranteed that the principal who 421
signed with its private key also had knowledge of the actual value of the content key carried in 422
the ContentKey object. 423

 424
Example of multiple signatures for a Controller object 425

Symmetric Signature 2
MAC(CK2)

Symmetric Signature 1
MAC(CK1)

ContentKey 2
Encrypted(CK2)

Control

Controller

Public Key Signature
PKI(PrivateKey)

ContentKey 1
Encrypted(CK1)

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 13 of 91

2.3 Rule Conditions, Identity and Key Management 426

Objects 427

 428

Node objects represent entities in an Octopus deployment (a DRM system that uses Octopus). 429
Octopus does not have implicit or explicit semantics for what the Node objects represent. A 430
given Octopus deployment will define what types of principals exist, and what roles and 431
identities different Node objects represent. That semantic information is typically expressed 432
using Attributes of the Node object. Link objects represent relationships between Nodes. Link 433
objects can also optionally contain some cryptographic data that allow Octopus to use the Links 434
for ContentKey derivation computations (see §6). Just as for Nodes, Octopus does not have 435
implicit or explicit semantics for what a Link relationship means. Depending on what the from 436
and to Nodes of the Link represent in a given deployment, the meaning of the Link relationship 437
can express membership, ownership, association, and many other types of relationships. In a 438
typical Octopus deployment, some Node objects could represent Users, other Nodes would 439
represent Devices, and other Nodes would represent User Groups or Authorized Domains (ADs). 440
In that context, Links between Devices and Users would represent an ownership relationship, and 441
Links between Users and User Groups or ADs would represent membership relationships. 442

= Signed
= Confidential

Link

‘From’
Node Ref

‘To’ Node
Ref

= Certified

Node ID

Scuba Private Key
[optional]

Scuba Public Key
[optional]

Scuba Symmetric Key
[optional]

Attributes (Node Type,
etc..)

Node ID

Scuba Private Key
[optional]

 Scuba Public Key
[optional]

Scuba Symmetric Key
[optional]

Attributes (Node Type,
etc..)

Scuba Key [optional]

Control [optional]

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 14 of 91

2.3.1 Node 443

A Node object represents an entity in the system. A Node object’s Attributes define certain 444
aspects of what the Node object represents, such as the role or identity represented by the Node 445
object in the context of a specific deployment. 446

2.3.2 Link 447

A Link object is a signed assertion that there exists a directed edge in the graph whose vertices 448
are the Node objects. For a given set of Nodes and Links, we say that there is a path between a 449
Node X and a Node Y if there exists a directed path between the Node X vertex and the Node Y 450
vertex in the graph. When there is a path between Node X and Node Y, we say that Node Y is 451
reachable from Node X. Those assertions represented by Link objects are used to express which 452
Nodes are reachable from other Nodes. The controls that govern Content objects can check, 453
before they allow an action to be performed, that certain Nodes are reachable from the Node 454
associated with the entity performing the action. For example, if Node D represents a device that 455
wants to perform the ‘Play’ action on a Content object, a control that governs this Content object 456
can test if a certain Node U representing a certain user is reachable from Node D. To determine if 457
Node U is reachable, Octopus will check if there exists a set of Link objects that can establish a 458
path between Node D and Node U. 459

All Links MUST be signed. Octopus verifies Link objects before it can use them to decide the 460
existence of paths in the Node graph. Depending on the specific features of the certificate system 461
(for example, X.509 v3) used to sign Link objects, Link objects can be given limited lifetimes, be 462
revoked, etc. Also, the policies that govern which keys can sign Link objects, which Link objects 463
can be created, and the lifetime of Link objects are not defined by this specification. Those 464
policies will exist outside of the scope of this specification, and will typically leverage the Node 465
Attributes information. 466

A Link object MAY contain a Control object that will be used to constrain the validity of the 467
Link, as specified in the Octopus Controls specification in §3. 468

2.4 Data Structures 469

The remaining sections of this specification define in more detail the object model for the 470
Octopus objects, defining the fields of each type of object. 471

These data structures are described using a simple object description syntax. Each object type is 472
defined by a class that can extend a parent class (this is an ‘is-a’ relationship). The class 473
descriptions are in terms of the simple abstract types ‘string’ (character string), ‘int’ (integer 474
value), ‘byte’ (8-bit value), and ‘boolean’ (true or false) but this specification does not define any 475
specific encoding for those data types, or for compound structures containing those types. The 476
way objects are encoded, or represented, can vary depending on the implementation of the 477
Engine. Typically, a given Octopus deployment will specify how the fields are represented (for 478
example, using an XML schema). 479

The following notations are used: 480
 481

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 15 of 91

class ClassName {
 field1;
 field2;
 ...
}

Defines a class type. A class type is a
heterogeneous compound data type (also called
an object type). This compound type is made
up of one or more fields, each of a simple or
compound type. Each field can be of a
different type.

type[] Defines a homogeneous compound data type
(also called a list or array type). This
compound type is made up of 0 or more
elements of the same type (0 when the list is
empty).

string Simple type: represents a Unicode character
string

int Simple type: represents an integer value
between -2147483648 and 2147483647

byte Simple type: represents an integer value
between 0 and 255

boolean Simple type: represents a Boolean value (true
or false)

class SubClass extends
SuperClass {…}

Defines a class type that extends another class
type. A class that extends another one contains
all the fields of the class it extends (called the
superclass) in addition to its own fields.

abstract class {…} Defines an abstract class type. Abstract class
types are types that can be extended, but are
never used by themselves.

{type field;} Defines an optional field. An optional field is a
field that may be omitted from the compound
data type that contains it.

(type field;) Defines a field that will be skipped when
computing the canonical byte sequence for the
enclosing compound field (see §5).

class SubClass extends
SuperClass(field=value) {…}

Defines a subclass of a class type and specifies
that for all instances of that subclass, the value
of a certain field of the superclass is always
equal to a fixed value.

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 16 of 91

2.4.1 Common Structures 482
 483
abstract class Octobject {
 {string id;}
 Attribute[] attributes;
 InternalExtension[] extensions;
}

class Transform {
 string algorithm;
}

class Digest {
 Transform[] transforms;
 string algorithm;
 byte[] value;
}

class Reference {
 string id;
 {Digest digest;}
}

2.4.1.1 Attributes 484

Attributes are either named or unnamed. Named attributes have a non-empty name field. 485
Unnamed attributes do not have a name. All attributes have a type. There are five attribute types: 486
IntegerAttribute, StringAttribute, ByteArrayAttribute, ListAttribute and ArrayAttribute. 487
Attributes of type IntegerAttribute, StringAttribute and ByteArrayAttribute are value-type 488
attributes: they have a value field. Attributes of type ListAttribute and ArrayAttribute are 489
container-type attributes: they contain other attributes. Attributes of type ListAttribute MUST 490
only contain named attributes. Attributes of type ArrayAttribute MUST only contain unnamed 491
attributes. 492
 493
abstract class Attribute {
 {string name;}
 string type;
}

class IntegerAttribute extends Attribute(type=’int’) {
 int value;
}

class StringAttribute extends Attribute(type=’string’) {
 string value;
}

class ByteArrayAttribute extends Attribute(type=’bytes’) {
 byte[] value;
}

class ListAttribute extends Attribute(type=’list’) {
 Attribute[] attributes; // must all be named
}

class ArrayAttribute extends Attribute(type=’array’) {
 Attribute[] attributes; // must all be unnamed
}

2.4.1.2 Extensions 494

There are two types of extensions: 495

Internal Extensions: carried inside the Octobject 496

External Extensions: carried outside the Octobject 497

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 17 of 91

 498
abstract class ExtensionData {
 string type;
}

abstract class Extension {
 string id;
}

class ExternalExtension extends Extension {
 string subject;
 ExtensionData data;
}

class InternalExtension extends Extension {
 boolean critical;
 {Digest dataDigest;}
 (ExtensionData data;)
}

It is important to be able to verify the signature of an Octobject even if a particular type of 499
ExtensionData is not understood by a given implementation. This is the purpose of the level of 500
indirection added by the ‘dataDigest’ field. 501

If the specification of this ExtensionData mandates that the data are part of the signature within 502
the context of a particular Octobject, then the ‘dataDigest’ field MUST be present. An 503
implementation that understands this ExtensionData, and is therefore capable of computing its 504
canonical representation, can then verify the digest. 505

If the specification of this ExtensionData mandates that the data are NOT part of the signature, 506
then the ‘dataDigest’ field MUST NOT be present. 507

2.4.2 Node Objects 508
 509
class Node extends Octobject {
}

2.4.3 Link Objects 510
 511
class Link extends Octobject {
 string fromId;
 string toId;
 {Control control;}
}

2.4.4 Control Objects 512
 513
class Control extends Octobject {
 string protocol;
 string type;
 byte[] codeModule;
}

2.4.5 ContentKey Objects 514
 515
abstract class Key {
 string id;
 string usage;
 string format;
 byte[] data;
}

abstract class PairedKey extends Key {

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 18 of 91

 string pairId;
}

class ContentKey extends Octobject {
 Key secretKey;
}

Each key has a unique id, a format, a usage (which MAY be an empty string), and data. The 516
‘usage’ field, if non-empty, specifies the purpose for which this key can be used. For content 517
keys, the ‘usage’ field MUST be empty. For Scuba (§6), this field specifies whether this is a key 518
sharing key or a confidentiality key. The ‘format’ field specifies the format of the ‘data’ field 519
(such as, for example, ‘RAW’ for symmetric keys, or ‘PKCS#8’ for RSA private keys, etc.). The 520
‘data’ field contains the actual key data, formatted according to the format specified in the 521
‘format’ field. 522

For keys that are part of a key pair (such as RSA keys), the extra field ‘pairId’ gives a unique 523
identifier for the pair, so that the pair can be referenced from other data structures. 524

NOTE: The ‘data’ field in the Key object is the plaintext value of the actual key, even if the 525
object’s representation contains an encrypted copy of the key. 526

2.4.6 Controller Objects 527
 528
class Controller extends Octobject {
 Reference controlRef;
 Reference[] contentKeyRefs;
}

The ‘digest’ field of the ‘controlRef’ MUST be present. 529

2.4.7 Protector Objects 530
 531
class Protector extends Octobject {
 Reference contentKeyRef;
 Reference[] contentRefs;
}

The ‘digest’ field of the ‘contentKeyRef’ field and of all the elements of the ‘contentRefs’ field 532
MUST be omitted. 533

 534

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 19 of 91

3 Octopus Controls 535

3.1 Introduction 536

This section of the document provides the specification for Octopus Control objects, describing 537
them in detail. Control objects can be used to represent rules that govern access to content by 538
granting or denying the use of the ContentKey objects they control. They can also be used to 539
represent constraints on the validity of a Link object in which they are embedded, or as 540
standalone program containers that are run on behalf of another entity, such as in agents or 541
delegates. Controls contain metadata and byte-code programs, which implement a specific 542
interaction protocol. The purpose of a Control Protocol is to specify the interaction between the 543
Octopus Engine and a control program or between a host application and a control program 544
through the Octopus Engine. This specification also defines which actions the application can 545
perform on the content, which action parameters should be supplied to the control program, and 546
how the control program encodes the return status indicating that the requested action can or 547
cannot be performed, as well as parameters that can further describe the return status. 548

3.2 Control Programs 549

A Control object contains a control program. A control program contains a Plankton code 550
module. (Plankton is described in §4.) A code module contains executable byte-code, and a list 551
of named routines (in the Export Table entries). 552

3.2.1 Naming Conventions 553

The set of routines that represent the rules that govern the performance of a certain operation 554
(such as “play”) on a content item is called an ‘action control’. The set of routines that represent 555
a validity constraint on a Link object is called a ‘Link constraint’. The set of routines that are 556
intended to be executed on behalf of a remote entity (such as during a protocol session with an 557
Octopus Engine running on a different host) is called an ‘agent’. The set of routines that are 558
intended to be executed on behalf of another control (such as when a control program uses the 559
System.Host.CallVm system call) is called a ‘delegate’. 560

3.2.2 Interface to Control Programs 561

Control programs are executed by a Plankton VM running in a Plankton host environment. The 562
specification does not make specific assumptions regarding the implementation of the host 563
environment other than the fact that it complies with the Plankton specification. However, for the 564
purpose of clarity, it is assumed that the implementation of the VM’s host environment can be 565
logically separated into two parts: a host application, and a DRM engine that we call the Octopus 566
Engine. An implementation MAY have a different logical separation of functions, provided that 567
the resulting behavior of the system is functionally equivalent to what is described in this 568
specification. 569

The Octopus Engine is the logical interface between the host application and the control 570
programs. The host application makes logical requests to the engine, such as requesting access to 571
a content key for a certain purpose (ex: to play or render a content stream). The engine MUST 572
ensure that the interaction protocol defined in this specification is implemented correctly, such as 573
ensuring any guarantees regarding a control program’s initialization, call sequence, and other 574
interaction details. 575

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 20 of 91

When the host application requests the use of content keys for a set of content IDs, the Octopus 576
Engine determines which Control object must be used. The Protector object allows the engine to 577
resolve which ContentKey objects need to be accessed for the requested content IDs. The engine 578
then finds the Controller object that references those ContentKey objects. The object model 579
states that a Controller object can reference more than one ContentKey object. This allows 580
multiple ContentKey objects to be governed by the same Control object. When the host 581
application requests access to a content key by invoking an action, it can request multiple content 582
IDs as a group, to the extent that the ContentKey objects that correspond to them are all 583
referenced by the same Controller object. It is not possible to request access to a group of content 584
keys referenced by more than one Controller object. 585

The Octopus Engine follows a convention for mapping actions to routine names. For each of the 586
routines described below, the name that appears in the Export Table entry in the code module is 587
the string equal to the routine name as it is spelled in the section titles. 588

3.2.2.1 Control Loading 589

Before the engine can make calls to control routines, it must load the control’s code module into 590
a Plankton VM. In this specification, only one code module per VM is loaded. Therefore, all 591
control routines SHALL be running in a VM with no other code module loaded. 592

3.2.2.2 Atomicity 593

The engine MUST ensure that calls to control routines are atomic with respect to the resources it 594
makes available to the routines, such as the SeaShell databases. (SeaShell is described in §7.) 595
This means that the engine MUST ensure that those resources remain unmodified during the 596
execution of any of the routines it calls. This may be done by effectively locking those resources 597
during a routine call, or by preventing multiple VMs from running concurrently. However, the 598
engine need not guarantee that those resources are unmodified across successive routine 599
invocations. 600

3.2.3 Control Protocol 601

The routine naming, and the input/output interface and data structures for each routine in a code 602
module, together constitute a Control Protocol. The protocol implemented by a code module is 603
signaled in the Control object’s ‘protocol’ field. The Control Protocol described in this document 604
is called the Standard Control Protocol, and its identifier (the value of the ‘protocol’ field) is 605
‘http://www.octopus-drm.com/specs/scp-1_0’. 606

Before the Octopus Engine loads a code module and calls routines in the control program, it 607
needs to guarantee that the interaction with the control program will be consistent with the 608
specification for the specific protocol ID signaled in the ‘protocol’ field. That includes any 609
guarantee about the features of the Plankton Virtual Machine that need to be implemented, 610
guarantees about the size of the address space available to the control program, etc. 611

It is possible for control protocols, such as the Standard Control Protocol, to evolve over time 612
without having to create a new protocol specification. As long as the changes made to the 613
protocol are consistent with previous revisions of the specification and it can be guaranteed that 614
existing implementations of the Octopus Engine, as well as existing control programs that 615
comply with that protocol, will continue to perform according to the specification, then the 616
changes are deemed compatible. Such changes MAY include, for instance, new action types. 617

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 21 of 91

3.2.4 Byte Code Type 618

The type of the byte-code module used in this protocol is Plankton byte-code module version 1.0 619
as specified in §4. The value for the ‘type’ field of the Control object is ‘http://www.octopus-620
drm.com/specs/pkcm-1_0’. 621

3.2.5 General Control Routines 622

General routines are routines that are applicable to the control as a whole, and are not specific to 623
a given action or Link constraint. 624

3.2.5.1 Control.Init 625

This routine is OPTIONAL. If this routine exists, the engine MUST call it exactly once before 626
any other control routine is called. 627

Input: None 628

Output: 629

Top of stack: 630
ResultCode

…

ResultCode

If ResultCode is not 0, the engine MUST abort the current control operation and MUST NOT 632
make any further calls to routines for this control. 633

: 0 on success, or a negative error code on failure. 631

3.2.5.2 Control.Describe 634

This routine is OPTIONAL. The routine is called when the application requests a description of 635
the meaning of the rules represented by this control program in general (i.e., not for a specific 636
action). 637

Input: None 638

Output: 639

Top of stack: 640
ResultCode

StatusBlockPointer

…

ResultCode: An integer value. The result value is 0 if the routine completed successfully, or a 641
negative error code if it did not. 642

StatusBlockPointer 4.7.3.2: Address of a standard ExtendedStatusBlock (see §). 643

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 22 of 91

3.2.5.3 Control.Release 644

This routine is OPTIONAL. If this routine exists, the engine MUST call it exactly once after it 645
no longer needs to call any other routine for this control. No other routine will be called for this 646
control unless a new use of the control is initiated (in which case, the Init routine MUST be 647
called again). 648

Input: None 649

Output: 650

Top of stack: 651
ResultCode

…

ResultCode

If ResultCode is not 0, the engine MUST NOT make any further calls to routines for this control. 653

: 0 on success, or a negative error code on failure. 652

3.2.6 Action Routines 654

Each possible action has a name. For a given action <Action>, the following routine names are 655
defined (<Action> stands for the actual name of the action): 656

3.2.6.1 Control.Actions.<Action>.Init 657

This routine is OPTIONAL. If this routine exists, the engine MUST call it exactly once before 658
any other routine is called for this action. 659

Input: None 660

Output: 661

Top of stack: 662
ResultCode

…

ResultCode

If ResultCode is not 0, the engine MUST abort the current action operation and MUST NOT 664
make any further calls to routines for this action. 665

: 0 on success, or a negative error code on failure. 663

3.2.6.2 Control.Actions.<Action>.Check 666

This routine is REQUIRED. This routine is called to check what the return status would be if the 667
Perform routine were to be called, without actually performing the action. This routine MUST 668
NOT have any side effects. 669

NOTE: If the Perform routine has no side effects, the Check and Perform entries in the control’s 670
Export Table can point to the same routine. 671

This routine has the same inputs and outputs as the Perform routine described in §3.2.6.3. 672

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 23 of 91

3.2.6.3 Control.Actions.<Action>.Perform 673

This routine is REQUIRED. This routine is called when the application is about to perform the 674
action. 675

NOTE: When an action is performed, only the ‘Perform’ routine is called. The engine SHALL 676
NOT call the ‘Check’ routine before calling the ‘Perform’ routine. The implementation of the 677
‘Perform’ can call the ‘Check’ routine internally if it chooses to, but should not assume that the 678
system will have called it beforehand. 679

Input: None 680

Output: 681

Top of stack: 682

ResultCode

StatusBlockPointer

…

ResultCode

A success ResultCode (0) return does not mean that the action request is granted. It only means 685
that the routine was able to run without error. It is the StatusBlock that indicates whether the 686
request is granted or denied. 687

: An integer value. The result value is 0 if the routine was able to run, or a negative 683
error code if an error occurred. 684

StatusBlockPointer 4.7.3.2: Address of a standard ExtendedStatusBlock (see §). 688

Description: A host application MUST call this routine when it is about to perform an action and 689
use the value of a ContentKey object. If the ResultCode indicates a failure, or the StatusBlock’s 690
category is ACTION_DENIED, or the returned ESB must be rejected (as described in §3.3.4.3), 691
the host application is not authorized to use the value of the ContentKey for the requested action 692
and MUST abort the action. 693

3.2.6.4 Control.Actions.<Action>.Describe 694

This routine is OPTIONAL. The routine is called when the application requests a description of 695
the meaning of the rule represented by this control program for this action. 696

Input: None 697

Output: 698

Top of stack: 699
ResultCode

StatusBlockPointer

…

ResultCode: An integer value. The result value is 0 if the routine was able to run, or a negative 700
error code if an error occurred. 701

StatusBlockPointer 4.7.3.2: Address of a standard ExtendedStatusBlock (see §). 702

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 24 of 91

3.2.6.5 Control.Actions.<Action>.Release 703

This routine is OPTIONAL. If this routine exists, it is called exactly once after the Octopus 704
Engine no longer needs to call any other routine for this action. No other routine will be called 705
for this action unless a new use of the action is initiated (in which case, the action’s Init routine 706
will be called again). 707

Input: None 708

Output: 709

Top of stack: 710
ResultCode

…

ResultCode

If ResultCode is not 0, the engine MUST NOT make any further calls to routines for this action. 712

: 0 on success, or a negative error code on failure. 711

3.2.7 Link Constraint Routines 713

When a Link object has an embedded Control, the Octopus Engine MUST call the Link 714
Constraint Check routine in that control (§3.2.7.2) to verify the validity of that Link object. 715

3.2.7.1 Control.Link.Constraint.Init 716

This routine is OPTIONAL. If this routine exists, it is called exactly once before any other 717
routine is called for this Link constraint. 718

Input: None 719

Output: 720

Top of stack: 721
ResultCode

…

ResultCode

If ResultCode is not 0, the engine MUST consider that the validity constraint for the Link object 723
under evaluation is not satisfied, and MUST NOT make any further calls to routines for this Link 724
control. 725

: 0 on success, or a negative error code on failure. 722

3.2.7.2 Control.Link.Constraint.Check 726

This routine is REQUIRED. This routine is called to check if the validity constraint for this Link 727
is satisfied. 728

Input: None 729

Output: 730

Top of stack: 731

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 25 of 91

ResultCode

StatusBlockPointer

…

ResultCode

NOTE: A success ResultCode (0) return does not mean that the constraint is satisfied. It only 734
means that the routine was able to run without error. It is the StatusBlock that indicates whether 735
the constraint is satisfied or not. 736

: An integer value. The result value is 0 if the routine was able to run, or a negative 732
error code if an error occurred. 733

StatusBlockPointer 4.7.3.2: Address of a Standard ExtendedStatusBlock (see §). 737

If ResultCode is not 0, the engine MUST consider that the validity constraint for the Link object 738
under evaluation is not satisfied, and MUST NOT make any further calls to routines for this Link 739
control. 740

3.2.7.3 Control.Link.Constraint.Describe 741

This routine is OPTIONAL. The engine calls this routine when the application requests a 742
description of the meaning of the constraint represented by this control program for this Link. 743

Input: None 744

Output: 745

Top of stack: 746
ResultCode

StatusBlockPointer

…

ResultCode: An integer value. The result value is 0 if the routine was able to run, or a negative 747
error code if an error occurred. 748

StatusBlockPointer 4.7.3.2: Address of a Standard ExtendedStatusBlock (see §). 749

3.2.7.4 Control.Link.Constraint.Release 750

This routine is OPTIONAL. If this routine exists, the engine MUST call it exactly once after it 751
no longer needs to call any other routine for this constraint. No other routine can be called for 752
this constraint unless a new cycle is initiated (in which case, the constraint’s Init routine MUST 753
be called again). 754

Input: None 755

Output: 756

Top of stack: 757
ResultCode

…

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 26 of 91

ResultCode

If ResultCode is not 0, the engine MUST NOT make any further calls to routines for this Link 759
constraint. 760

: 0 on success, or a negative error code on failure. 758

3.2.8 Agent Routines 761

An agent is a Control object that is designed to run on behalf of an entity. Agents are typically 762
used in the context of a service interaction between two endpoints, where one endpoint needs to 763
execute some Plankton code within the context of the second endpoint, and possibly obtain the 764
result of that execution. A control can contain multiple agents, and each agent can contain any 765
number of routines that can be executed, but in practice, agents are likely to have a single 766
routine. 767

The following entry points are defined for agents. <Agent> is a name string that refers to the 768
actual name of an agent. 769

3.2.8.1 Control.Agents.<Agent>.Init 770

This routine is OPTIONAL. If this routine exists, the engine MUST call it exactly once before 771
any other routine is called for this agent. 772

Input: None 773

Output: 774

Top of stack: 775
ResultCode

…

ResultCode

3.2.8.2 Control.Agents.<Agent>.Run 777

: 0 on success, or a negative error code on failure. 776

This routine is REQUIRED. This routine is the main routine of the agent. 778

Input: None 779

Output: 780

Top of stack: 781
ResultCode

ReturnBlockAddress

ReturnBlockSize

…

ResultCode: An integer value. The result value is 0 if the routine was able to run, or a negative 782
error code if an error occurred. 783

ReturnBlockAddress: Address of a block of memory that contains data that the agent code is 784
expected to return to the caller. If the routine does not need to return anything, the address is 0. 785

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 27 of 91

ReturnBlockSize

3.2.8.3 Control.Agents.<Agent>.Describe 788

: Size in bytes of the block of memory at ReturnBlockAddress. If 786
ReturnBlockAddress is 0, this value MUST also be 0. 787

This routine is OPTIONAL. The routine is called when the application requests a description of 789
the agent. 790

Input: None 791

Output: 792

Top of stack: 793
ResultCode

StatusBlockPointer

…

ResultCode: An integer value. The result value is 0 if the routine completed successfully, or a 794
negative error code. 795

StatusBlockPointer 4.7.3.2: Address of a standard ExtendedStatusBlock (see §). 796

3.2.8.4 Control.Agents.<Agent>.Release 797

This routine is OPTIONAL. If this routine exists, the engine MUST call it exactly once after it 798
no longer needs to call any other routine for this agent. No other routine will be called for this 799
agent unless a new cycle is initiated (in which case, the agent’s Init routine MUST be called 800
again). 801

Input: None 802

Output: 803

Top of stack: 804
ResultCode

…

ResultCode

3.3 Extended Status Blocks 806

: 0 on success, or a negative error code on failure. 805

The following definitions are applicable to the ESB data structures returned by several of the 807
routines described above. The ESB data structure is defined in the Plankton specification in 808
§4.7.3.2. 809

3.3.1 Global Flags 810

There are no global ESB flags defined in this specification. Therefore all control programs 811
compliant with this specification SHALL always set the GlobalFlags field of ESBs to 0. 812

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 28 of 91

3.3.2 Categories 813

The following sections 3.3.2.1 through 3.3.2.3 define values for the Category field of Extended 814
Status Blocks. None of those categories has a subcategory; therefore the value of the 815
SubCategory field of the ESBs SHALL be set to 0. 816

3.3.2.1 Check and Perform Routines for Actions 817
 818
Value Name Description

0 ACTION_GRANTED The application is authorized to use the content keys
controlled by this control program for the purpose of the
requested action.

The parameter list of the returned ESB SHOULD NOT
contain any of the constraint parameters, but MAY contain
obligation and/or callback parameters.

Subcategories:

Id Name Description

0 UNSPECIFIED Unspecified (N/A)

1 ACTION_DENIED The application is not authorized to use the content keys
controlled by this control program for the purpose of the
requested action.

When an action is denied, the control program SHOULD
include in the parameter list of the returned ESB one or
more of the constraints that were not met and caused the
action to be denied. (The constraints that were not
evaluated and the constraints that did not cause the action
to fail SHOULD be omitted.)

The parameter list of the returned ESB MUST NOT
contain any obligation or callback parameter.

Subcategories:

Id Name Description

0 UNSPECIFIED Unspecified (N/A)

 819

In the context of ESB parameters returned by action routines, a constraint means a condition that 820
is required to be true or a criterion that is required to be met in order for the result of the routine 821
to return an ESB with the Category ACTION_GRANTED. 822

Values for the LocalFlags field common to both categories described above: 823
 824
Bit Index (0

is LSB)
Name Description

0 OBLIGATION_NOTICE The parameter list contains one or more
parameters that are related to obligations.

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 29 of 91

1 CALLBACK_NOTICE The parameter list contains one or more
parameters that are related to callbacks.

2 GENERIC_CONSTRAINT The parameter list contains one or more
parameters that are related to generic
constraints.

3 TEMPORAL_CONSTRAINT The parameter list contains one or more
parameters that are related to temporal
constraints.

4 SPATIAL_CONSTRAINT The parameter list contains one or more
parameters that are related to spatial
constraints.

5 GROUP_CONSTRAINT The parameter list contains one or more
parameters that are related to group
constraints.

6 DEVICE_CONSTRAINT The parameter list contains one or more
parameters that are related to device
constraints.

7 COUNTER_CONSTRAINT The parameter list contains one or more
parameters that are related to counter
constraints.

In this table, the parameter list mentioned in the descriptions is the ‘Parameters’ field of the 825
ExtendedStatusBlock data structure. 826

3.3.2.2 Describe Routines 827
 828
Value Name Description

0 UNSPECIFIED Unspecified (N/A)

Subcategories:

Id Name Description

0 UNSPECIFIED Unspecified (N/A)

For those categories, the same local flags as the ones defined for action routines apply. 829

Describe routines SHOULD include in their returned ESB a parameter named ‘Description’ as 830
specified in §3.3.4.1. 831

Describe routines MUST NOT contain in their returned ESB any obligation or callback 832
parameters. 833

Describe routines SHOULD return ESB parameters that describe some or all of the constraints 834
that are applicable for the corresponding action or Link constraint. 835

3.3.2.3 Link Constraint Routines 836
 837

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 30 of 91

Value Name Description

0 LINK_VALID The Link constrained by this control program is valid.

The parameter list of the returned status block SHOULD NOT
contain any of the constraint parameters, and MUST NOT contain
obligation or callback parameters

Subcategories:

Id Name Description

0 UNSPECIFIED Unspecified (N/A)

1 LINK_INVALID The Link constrained by this control program is invalid.

When a Link is invalid, the control program SHOULD include in
the parameter list of the returned ESB one or more of the
constraints that were not met and caused the Link to be invalid.
(The constraints that were not evaluated and the constraints that
did not cause the action to fail SHOULD be omitted.)

The parameter list of the returned ESB MUST NOT contain any
obligation or callback parameter.

Subcategories:

Id Name Description

0 UNSPECIFIED Unspecified (N/A)

For those categories, the same local flags as the ones defined for action routines apply. 838

In the context of ESB parameters returned by Link constraint routines, a constraint means a 839
condition that is required to be true or a criterion that is required to be met in order for the result 840
of the routine to return an ESB with the Category LINK_VALID. 841

3.3.3 Cache Durations 842

The CacheDuration field of an ESB is an indication of the validity period of the information 843
encoded in the ESB. When an ESB has a non-zero validity period, it means that the ESB can be 844
stored in a cache, and that during that period of time, a call to the exact same routine with the 845
same parameters would return the same ESB, so the cached value MAY be returned to the host 846
application instead of calling the routine. 847

3.3.4 Parameters 848

Some parameters are used to convey detailed information about the return status, as well as 849
variable bindings for template processing. 850

NOTE: Except for the obligations and callbacks, all the constraints described here are strictly for 851
the purpose of helping the host application classify and display, not for enforcement of the usage 852
rules. The enforcement of the rules is solely the responsibility of the control program. 853

The parameters defined in the sections below (3.3.4.1 through 3.3.4.2.6) are encoded either as a 854
ParameterBlock (§4.7.3.1.1) if no parameter flags are applicable or as an 855

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 31 of 91

ExtendedParameterBlock (§4.7.3.1.2) if one or more flags are applicable. Flags are specified in 856
§3.3.4.3. 857

3.3.4.1 Description 858

Parameter Name: Description 859

Parameter Type: ValueList 860

Description: List of description parameters. Each value in the list is of type Parameter or 861
ExtendedParameter. The following parameters are defined: Default, Short and Long. 862

Each of them, if present, has for its value the ID of one of the control’s resources. That resource 863
SHOULD contain a textual payload, or a template payload (as described in §3.5). If the resource 864
is a template, it is processed to obtain a textual description of the result (either a description of 865
the entire control program, or of a specific action). The template is processed using as variable 866
bindings the other parameters of the list in which the ‘Description’ parameter appears. 867

The ‘Short’ and ‘Long’ descriptions can only be included if a ‘Default’ description is also 868
included. 869

Name Type Description

Default Resource ID of the resource that contains the normal description text or
template

Short Resource ID of the resource that contains the short description text or
template

Long Resource ID of the resource that contains the long description text or
template

3.3.4.2 Constraints 870

Constraint parameters are grouped in lists that contain constraints of similar types. This 871
specification defines standard constraints for some of the types. Controls MAY return constraint 872
parameters that are not defined in this specification, provided that the name of each constraint 873
parameter is a URN in a namespace that guarantees the uniqueness of that name. This MAY 874
include vendor-specific constraints, or constraints defined in other specifications. 875

3.3.4.2.1 Generic Constraints 876

Parameter Name: GenericConstraints 877

Parameter Type: ValueList 878

Description: List of generic constraints that may be applicable. Each value in the list is of type 879
Parameter or ExtendedParameter. 880

Generic constraints are constraints that do not belong to any of the other constraint types defined 881
in §3.3.4.2 882

The following generic constraint parameters are defined: 883
 884

Name Type Description

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 32 of 91

NodeReachabilityRequired String ID of a Node that is required to be reachable.

3.3.4.2.2 Temporal Constraints 885

Parameter Name: TemporalConstraints 886

Parameter Type: ValueList 887

Description: List of temporal constraints that may be applicable. Each value in the list is of type 888
Parameter or ExtendedParameter. 889

Temporal constraints are constraints that are related to time, dates, durations, etc. 890

The following temporal constraint parameters are defined: 891
 892

Name Type Description

NotBefore Date Date before which the action is denied.

NotAfter Date Date after which the action is denied.

NotDuring ValueList List of 2 values of type Date. The first value is the start
of the period, and the second is the end of the period that
is excluded.

NotLongerThan Integer Max number of seconds after first use. This value is
unsigned.

NotMoreThan Integer Max number of seconds of accumulated use time. This
value is unsigned.

3.3.4.2.3 Spatial Constraints 893

Parameter Name: SpatialConstraints 894

Parameter Type: ValueList 895

Description: List of spatial constraints that may be applicable. Each value in the list is of type 896
Parameter or ExtendedParameter. 897

Spatial constraints are constraints that are related to physical locations. 898

No standard spatial constraint is defined in this specification. 899

3.3.4.2.4 Group Constraints 900

Parameter Name: GroupConstraints 901

Parameter Type: ValueList 902

Description: List of group constraints that may be applicable. Each value in the list is of type 903
Parameter or ExtendedParameter. 904

Group constraints are constraints that are related to groups, group membership, identity groups, 905
etc. 906

The following parameters are defined: 907

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 33 of 91

 908
Name Type Description

MembershipRequired Resource ID of the resource that contains the text or template
for the name or identifier of a group for which a
membership is required

IdentityRequired Resource ID of the resource that contains the text or template
for the name or identifier of an individual

3.3.4.2.5 Device Constraints 909

Parameter Name: DeviceConstraints 910

Parameter Type: ValueList 911

Description: List of device constraints that may be applicable. Each value in the list is of type 912
Parameter or ExtendedParameter. 913

Device constraints are constraints that are related to characteristics of a device, such as features, 914
attributes, names, identifiers, etc. 915

The following parameters are defined: 916
 917

Name Type Description

DeviceTypeRequired Resource ID of the resource that contains the text or template
for the type of host device that is required

DeviceFeatureRequired Resource ID of the resource that contains the text or template
for the name of a feature that the host device must
have

DeviceIdRequired String ID that the device is required to have. This ID MAY
be any string that can be used to identify the device
(device name, device serial number, a Node ID,
etc.)

Obligation and Callback parameters are described in §3.4. 918

3.3.4.2.6 Counter Constraints 919

Parameter Name: CounterConstraints 920

Parameter Type: ValueList 921

Description: List of counter constraints that may be applicable. Each value in the list is of type 922
Parameter or ExtendedParameter. 923

Counter constraints are constraints that are related to counted values, such as play counts, 924
accumulated counts, etc. 925

The RepeatCount parameter is defined as follows: 926
There MUST be only one RepeatCount parameter. 927
 928

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 34 of 91

Name Type Description

RepeatCount ValueList List of 2 unsigned Integer values. The first value is
the number of repeats that must not be exceeded.
The second value is the number of repeats that are
still allowed.

For example, if you can repeat an action 3 times, the constraint would be: 929

RepeatCount = [3,3] before the first 'Perform' 930
RepeatCount = [3,2] after the first 'Perform' 931
RepeatCount = [3,1] after the second 'Perform' 932
RepeatCount = [3,0] after the third 'Perform' 933

The first value MAY be 0 if the maximum value is unknown. For example, this is used for a case 934
where there is an item which allows playing a limited number of times, but there is no set 935
maximum: first 'purchase' some number of plays, and afterwards purchase some additional 936
number of plays. So, there is a count (it can say: "you can play this content X more times"), but 937
there's no fixed maximum. 938

3.3.4.3 Parameter Flags 939

The following flags MAY be used for all the parameters described in §3.3.4 of this specification 940
when they are encoded as an ExtendedParameterBlock. 941
 942

Bit
Index
(0 is
LSB)

Name Description

0 CRITICAL The semantics associated with this parameter need to be
understood by the host application. If they are not, the
entire ESB should be treated as not understood and
rejected.

This flag SHOULD NOT be used for parameters that are
descriptive in nature.

1 HUMAN_READABLE This parameter represents a value whose name and value
are suitable to display in a textual or graphical user
interface. Any parameter that does not have this flag set
should be reserved for the host application, and not be
shown to a user. For parameter values of type Resource,
it is not the resource ID but the resource data payload
referenced by the ID that is human-readable.

3.4 Obligations and Callbacks 943

Certain actions, when granted, require further participation from the host application. Obligations 944
represent operations that need to be performed by the host application upon or after the use of the 945
content key it is requesting. Callbacks represent calls to one or more of the control program 946

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 35 of 91

routines that need to be performed by the host application upon or after the use of the content key 947
they are requesting. 948

If an application encounters any critical obligation or callback that it does not support, or does 949
not understand (for example because the obligation type may have been defined after the 950
application was implemented), it MUST refuse to continue the action for which this obligation or 951
callback parameter was returned. A critical obligation or callback is indicated by setting the 952
CRITICAL parameter flag for the parameter that describes it. 953

If a control has side effects (such as decrementing a play count, for example), it SHOULD use 954
the OnAccept callback to require the host application to call a certain routine if it is able to 955
understand and comply with all critical obligations and callbacks. The side effect SHOULD 956
happen in the callback routine. All implementations MUST understand and implement the 957
OnAccept callback. 958

3.4.1 Parameters 959

The following parameters define several types of obligations and callbacks that can be returned 960
in ExtendedStatusBlock data structures. 961

3.4.1.1 Obligations 962

Parameter Name: Obligations 963

Parameter Type: ValueList 964

Description: List of obligation parameters. Each value in the list is of type Parameter or 965
ExtendedParameter. The following obligation parameters are defined: 966
 967

Name Type Description

RunAgentOnPeer ValueList The host application MUST send an agent control to run on
the peer of the currently running protocol session.

Type Description

String ID of the Control that contains the
agent to run.

String Name of the agent to run.

Integer Instance ID. This value is used to
uniquely identify this agent obligation
instance. This ID will also allow the
system to correlate this agent
obligation with an
OnAgentCompletion callback
parameter.

String Context ID. This ID will be visible to
the running agent on the peer under the
agent’s session context host object
path:
Octopus/Agent/Parameters/Session/Co

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 36 of 91

ntextId.

ValueList List of values of type Parameter. All
these parameters will be visible to the
agent as input parameters. These agent
parameters MUST NOT contain values
for which there are not defined
mappings to host objects.

3.4.1.2 Callbacks 968

Parameter Name: Callbacks 969

Parameter Type: ValueList 970

Description: List of callback parameters. Each value in the list is of type Parameter or 971
ExtendedParameter. The following callback parameters are defined: 972
 973

Name Type Description

OnAccept Callback The host application MUST call back if it is able to comply
with all the requirements signaled in the ESB unless the
host application can determine that it cannot successfully
perform the action (see NOTE 1 below).

The host application MUST NOT call back if it is unable to
comply with all the requirements signaled in the ESB.

The requirements signaled in the ESB include any and all
callbacks and obligations that cannot be ignored (they are
marked as CRITICAL, as defined in §3.3.4.3) and any other
implicit or explicit requirements (e.g., permissions)
indicated by other fields of the ESB.

There MUST be at most one OnAccept callback parameter
in a list of callback parameters. If other callback parameters
are specified in the list, the OnAccept callback MUST be
executed first.

NOTE 1: This callback is likely to trigger some type of side
effect. If the host application can determine that it is unable
to successfully perform the action, it MUST NOT call back.
It is understood that host applications are not always able to
determine, for all actions, whether they can be successfully
performed. Such a determination is implementation
specific.

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 37 of 91

OnTime ValueList The host application MUST call back after the specified
date/time has passed.

Type Description

Date The date/time after which the host
application needs to perform the callback.

Callback Routine to call back, and associated
cookie.

OnTimeElapsed ValueList The host application MUST call back after the specified
duration has elapsed. (The counting starts when the host
application actually performs the action for which the
permission was granted.)

Type Description

Integer Number of seconds. The value is
unsigned.

Callback Routine to call back, and associated
cookie.

OnEvent ValueList The host application MUST call back when a certain event
occurs.

Type Description

String Event Name.

Integer Event Flags. (The integer value is
interpreted as a bit-field.)

Integer Event Parameter.

Callback Routine to call back, and associated
cookie.

See the section about events, §3.3.4.2, for more details
about the events.

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 38 of 91

OnAgentCompletion ValueList The host application MUST call back when an agent
specified in one of the obligation parameters has completed,
or failed to run.

Type Description

Integer Agent instance ID.

The instance ID specified in an agent
obligation.

Callback Routine to call back, and associated
cookie.

When calling back, the host application MUST provide the
following ArgumentsBlock:

Type Encoding Description

32-bit
integer

4 bytes in
big-endian
order

Completion status code.

32-bit
integer

4 bytes in
big-endian
order

Agent result code.

8-bit byte
array

Byte
sequence

Agent ReturnBlock.

The completion status code value is 0 if the agent was able
to run, or a negative error code if it was not.

The agent ReturnBlock is the data returned by the agent.
This is omitted if the agent was unable to run (that is, if the
completion status code is not 0).

The ‘Callback’ type mentioned in the table above is a ValueListBlock with three ValueBlock 974
elements. 975

 976
 977

Value
Type

Description

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 39 of 91

Integer ID of the callback type. Two types of callbacks are defined:

ID Description

RESET = 0 All pending callback requests and active obligations
are cancelled upon calling the callback routine. The
callback routine returns an ESB that indicates if and
how the application can continue with the current
operation.

CONTINUE =1 The callback routine is called while all other pending
callback requests and active obligations remain in
effect. The callback routine returns a simple result
code. The application can continue with the current
operation unless that result code indicates a failure.

String Entry point to call in the code module. This MUST be one of the entries in the
Export Table of the code module for the same Control as the one containing the
routine that returned the ESB with this parameter.

Integer Cookie. This value will be passed on the stack to the routine that is called.

3.4.1.3 Parameter Flags 978

The same parameter flags as those defined in §3.3.4.3 are applicable. It is important that all 979
callbacks and obligations that the caller is required to implement be marked as CRITICAL; 980
otherwise, a host application MAY have the choice to ignore those parameters. 981

3.4.2 Events 982

Events are specified by name. Depending on the type of event, there may be a set of flags defined 983
that further specify the event; if no flags are defined for a specific event, the value of the Flag 984
field MUST be 0. Also, some events may specify that some information be supplied to the 985
callback routine when the event occurs; if no special information is required from the host 986
application, the application MUST call with an empty ArgumentsBlock (see the description of 987
the callback routine interface in §3.4.3). 988

If the name of an event in a callback parameter marked CRITICAL is not understood or not 989
supported by the host application, the application MUST consider this parameter as a not-990
understood CRITICAL parameter; the action for which permission was requested MUST NOT 991
be performed. 992

The following event names are defined: 993
 994

Event Name Event
Flags

Event
Parameter

Description

OnPlay None None The host application MUST call back when the
multimedia object starts playing.

OnStop None None The host application MUST call back when the
multimedia stops playing (or is paused).

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 40 of 91

OnTimecode None Presentation
time expressed
in number of
seconds since
the start of the
presentation

The host application MUST call back when the
specified presentation time has been reached or
exceeded (during normal real-time playback or
after a seek). The origin of the presentation time
is when the rendering begins. The presentation
time relates to the source media time, not the
wall-clock time; when a presentation is paused,
the presentation time does not change.

OnSeek None None The host application MUST call back when a
direct access to an arbitrary point in a
multimedia presentation occurs.

When calling back, the host application MUST
provide the following data in an
ArgumentsBlock:

Type Encoding Description

32-bit
unsigned
integer

4 bytes in big-
endian order

Seek position
offset

32-bit
unsigned
integer

4 bytes in big-
endian order

Seek position
range

The position within the multimedia presentation
is offset ‘marks’ out of range total ‘marks’ in
the presentation.

For instance, for a presentation that is 327
seconds long, seeking to the 60th second can be
represented with offset=60, range=327. It is up
to the caller to choose the unit that corresponds
to the measurement of the offset and range (it
could be a time unit, a byte-size unit, or any
other unit), provided that the ‘marks’ are
homogeneously distributed over the entire
presentation. The value of offset MUST be less
than or equal to the value of range.

3.4.3 Callback Routines 995

All callback routines take the same input: 996

Input: 997

Top of stack: 998
Cookie

ArgumentsBlockSize

…data…

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 41 of 91

Cookie: The value of the Cookie field that was specified in the callback parameter. 999

ArgumentsBlockSize

3.4.3.1 CONTINUE Callbacks 1005

: The number of bytes of data passed on the stack below this parameter. 1000
When the routine is called, the stack contains the value ArgumentsBlockSize supplied by the 1001
caller (indicating the size of the arguments block) at the top, followed by ArgumentsBlockSize 1002
bytes of data. If the size is not a multiple of 4, the data on the stack will be padded with 0-value 1003
bytes to ensure that the Stack Pointer remains a multiple of 4. 1004

Callbacks with the type CONTINUE have the following output: 1006

Output: 1007

Top of stack: 1008
ResultCode

…

ResultCode

Description: If the ResultCode indicates that the callback routine was able to run (value 0), the 1011
host application can continue the current operation. If the ResultCode indicates that an error 1012
occurred, the host application MUST abort the current operation and cancel all pending callbacks 1013
and obligations. 1014

: An integer value. The result value is 0 if the routine was able to execute, or a 1009
negative error code if an error occurred. 1010

3.4.3.2 RESET Callbacks 1015

When a control routine has specified one or more callbacks of type RESET in the ESB returned 1016
from a routine, the host application SHALL call any specified callback routine when the 1017
condition for that callback is met. As soon as the conditions of any of the callbacks are met, the 1018
host application MUST: 1019

• Cancel all other pending callbacks 1020

• Cancel all current obligations 1021

• Provide the required parameters (if any) for that callback 1022

• Call the specified callback routine 1023

The return status from the routine indicates to the host application whether it can continue 1024
performing the current operation. If the permission is denied or the routine fails to execute 1025
successfully, the host application MUST abort the performance of the current operation. If the 1026
permission is granted, the host application MUST comply with any obligation or callback that 1027
may be returned in an ESB, just as if it had called the original Control.Actions.<Action>.Perform 1028
routine. Previous obligations or callback specifications are no longer valid. 1029

All routines specified as callback entry points for this type of callback have the following output: 1030

Output: 1031

Top of stack: 1032
ResultCode

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 42 of 91

StatusBlockPointer

…

ResultCode: An integer value. The result value is 0 if the routine was able to execute, or a 1033
negative error code if an error occurred. 1034

StatusBlockPointer

Description: The return semantics of this routine are equivalent to what is described for the 1036
Control.Actions.<Action>.Perform routine. 1037

: Address of a standard ExtendedStatusBlock. 1035

3.5 Metadata Resources 1038

Control objects can contain metadata resources, which can be referenced from the parameters 1039
returned in ExtendedStatusBlock data structures. Resources can be simple text, text templates, or 1040
other data types. Each resource is identified by a resource ID, and can contain one or more text 1041
strings or encoded data, one for each version in a different language. It is not required that 1042
resources be provided for all languages. It is up to the host application to choose which language 1043
version is most appropriate for its needs. 1044

An implementation MAY choose to not dereference the content of resources if it does not need 1045
to use the data in the resource. For example, a device without a user interface is likely to not need 1046
to dereference resources referenced from the ‘Description’ parameters in an 1047
ExtendedStatusBlock. 1048

 1049
Resource

Field Type Description

Id ASCII String ID of a resource in a ResourceList
extension

Type ASCII String MIME-type of the resource data, as
described in IETF RFC 2046
[RFC2046]

Data List of
LocalizedData

List of all the different versions of the
resource, for different locales

 1050
LocalizedData

Field Type Description

Language ASCII String Language code, as specified in IETF
RFC 3066 [RFC3066]

Data Type depends on
the specified
mime type

The actual data for the resource (text,
etc.)

Resources accompany control programs by being included in a ResourceList Extension in a 1051
Control object. The resource ID maps to the ID of a Resource in a ResourceList internal 1052

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 43 of 91

extension of the Control object that contains the code module with the routine that is currently 1053
running. 1054

For the purpose of computing the canonical byte sequence for Resource objects, the data 1055
structure description is the following (see §2 for more details on canonical byte sequences): 1056

 1057
class LocalizedData {
 string language
 byte[] data;
}

class Resource {
 string id
 string type;
 LocalizedData[] data;
}

class ResourceList {
 Resource[] resources;
}

class ResourceListExtension extends ExtensionData(type=’ResourceList’) {
 ResourceList resources;
}

3.5.1 Simple Text 1058

Simple text is specified as MIME-type ‘text’. 1059

3.5.2 Text Templates 1060

In addition to the standard text resources, this specification defines a text template type. The 1061
MIME-type for this is ‘text/vnd.intertrust.octopus-text-template’. 1062

A text template contains text characters encoded in UTF-8, as well as named placeholders that 1063
are to be replaced by text values obtained from parameters returned in the parameters list, such as 1064
that of an ExtendedStatusBlock. The syntax for a placeholder is ‘\PLACEHOLDER\’, where 1065
PLACEHOLDER specifies the name of a ParameterBlock and an OPTIONAL formatting hint. 1066
The template processor MUST replace the entire token ‘\PLACEHOLDER\’ with the formatted 1067
representation of the Value field of that ParameterBlock. The formatting of the Value data is 1068
specified in §3.5.2.1. 1069

If the character ‘\’ appears in the text outside of a placeholder, it MUST be encoded as ‘\\’. All 1070
occurrences of ‘\\’ in the text SHALL be reverted to ‘\’ by the template processor. 1071

The syntax for the placeholder is: FORMAT|NAME, where NAME is the name of a 1072
ParameterBlock, and FORMAT is the formatting hint to convert the parameter’s data into text. If 1073
the default formatting rules for the parameter’s value’s data type are sufficient, then the 1074
formatting hint can be omitted, and the placeholder is simply NAME. 1075

3.5.2.1 Formatting 1076

3.5.2.1.1 Default Formatting 1077

The default formatting rules for the different value types are: 1078
 1079

Type Formatting

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 44 of 91

Integer Text representation of the integer value as a signed decimal. The text
is composed only of the characters for the digits “0” to “9” and the
character “-“. If the value is 0, the text is the string “0”. If the value is
not 0, the text does not start with the character “0”. If the value is
negative, the text starts with the character “-”. If the value is positive,
the text starts with a non-zero digit character.

Real Text representation of the floating point value in decimal. The integral
part of the value is represented using the same rules as for Integer
values. The decimal separator is represented with the host
application’s preferred decimal separator. The fractional part of the
value consists of up to 6 “0” characters followed by up to 3 non-zero
digit characters.

String The string value itself.

Date A human-readable representation of the date, according to the host’s
preferred text representation of dates.

Parameter The text “<name>=<value>”, where <name> is the parameter name,
and <value> is the parameter value formatted according to the default
formatting rules for its type.

ExtendedParameter Same as for Parameter.

Resource Text string of the resource’s data. The resource referenced by the
placeholder MUST have a MIME-type that is text-based (e.g., text or
text/vnd.intertrust.octopus-text-template).

ValueList The text “<value>, <value>, …” with all the values in the list
formatted according to the default formatting rules for their type.

3.5.2.1.2 Explicit Formatting 1080

Those format names can be used as the FORMAT part of a placeholder tag. If an unknown 1081
FORMAT name is encountered, the template processing engine will use the default formatting 1082
rules. 1083
 1084

Name Formatting

Hex Hexadecimal representation of an integer value interpreted as unsigned. NOTE:
This formatting hint should be ignored for data types that are not integers.

3.6 Context Objects 1085

When a control routine is executing, it has access to a number of context objects, through the use 1086
of the System.Host.GetObject system call (§4.7.2.7). 1087

3.6.1 General Context 1088

This Context MUST be present for all running controls. 1089
 1090

Name Type Description

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 45 of 91

Octopus/Personality/Id String ID of the current Personality
Node

Octopus/Personality/Attributes Container of Attributes Attributes of the current
Personality Node

3.6.2 Runtime Context 1091

This context MUST be present for all running controls running in a VM that has been created 1092
using the System.Host.SpawnVm system call. For controls running in a VM not created using 1093
System.Host.SpawnVm, this context MUST be nonexistent, or an empty container. 1094
 1095

Name Type Description

Octopus/Runtime/Parent/Id Container of
unnamed
String objects

The identity under which the caller of the
system call is running. The Id value is an
array of names, one for each of the names
associated with this identity.

3.6.3 Control Context 1096

This context MUST be present whenever a routine of a control is running. 1097
 1098

Name Type Description

Octopus/Control/Id String ID of the running Control

Octopus/Control/Attributes Container Attributes of the running control. This
object MAY be omitted if the control has
no attributes.

3.6.4 Controller Context 1099

This Context MUST be present whenever a routine of a control is running and the control was 1100
pointed to by a Controller object (e.g., when accessing a ContentKey object when consuming 1101
content). 1102

It is guaranteed that for any action there will be only one applicable Controller object, because of 1103
the restriction imposed on the system to only allow a host application to group content keys that 1104
are controlled by a single Controller object. 1105
 1106

Name Type Description

Octopus/Controller/Id String ID of the Controller that points to the
currently running Control.

Octopus/Controller/Attributes Container Attributes of the Controller pointing to the
currently running control. This object MAY
be omitted if the controller has no attributes.

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 46 of 91

3.6.5 Action Context 1107

This Context MUST be present whenever a control is called for the purpose of controlling an 1108
action. 1109

 1110

 1111
 1112

Name Type Description

Octopus/Action/Parameters Container Array of Name/Value pairs representing the
parameters that are relevant for the current
action, if any. Each action type defines a list of
OPTIONAL and REQUIRED parameters. This
container MAY be omitted if the action has no
parameters.

3.6.6 Link Context 1113

This context MUST be present whenever a control is called for the purpose of limiting the 1114
validity of a Link object (i.e., the Control object is embedded in a Link object). 1115

 1116

Name Type Description

Octopus/Link/Id String ID of the Link object

Octopus/Link/Attributes Container Attributes of the Link object that contains the
running Control. This object MAY be omitted if
the Link has no attributes.

3.6.7 Agent Context 1117

This context MUST be present whenever an agent routine of a control is running. 1118
 1119

Name Type Description

Octopus/Agent/Parameters Container Array of Name/Value parameter pairs
representing the input parameters for the
agent.

Octopus/Agent/Session/ContextId String Identifier for the session context in which the
agent is running.

The Parameters and Session containers are normally used to allow the protocols that require one 1120
entity to send and run an agent on another entity to specify which input parameters to pass to the 1121
agent, and which session context objects the host needs to set under certain conditions. The 1122
presence or absence of certain session context objects may allow the agent code to decide 1123
whether it is running as part of the protocol it was designed to support, or if it is running out of 1124
context, in which case it may refuse to run. For example, an agent whose purpose is to create a 1125

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 47 of 91

state object on the host on which it runs may refuse to run unless it is being executed during a 1126
specific protocol interaction. 1127

3.7 Actions 1128

Each action has a name, and a list of parameters. Some parameters are REQUIRED (the 1129
application MUST provide them when performing this action), and some are OPTIONAL (the 1130
application MAY provide them, or MAY omit them). 1131

The following standard actions are defined: 1132

3.7.1 Play 1133

Description: Normal real-time playback of the multimedia content. 1134

Parameters: 1135
 1136

Name Type Description

N/A N/A N/A

3.7.2 Transfer 1137

Description: Transfer to a compatible target system. 1138

Transferring to a compatible target system is used when the content has to be made available to a 1139
system with the same DRM technology, such that the target system can use the same license as 1140
the one that contains this control, but state information may need to be changed on the source, 1141
the sink, or both. The system from which the transfer is being done is called the source. The 1142
target system to which the transfer is being done is called the sink. 1143

This action is intended to be used in conjunction with a service protocol that allows an agent to 1144
be transferred from the source to the sink in order to do the necessary updates in the source’s and 1145
sink’s persistent states (objects in a SeaShell database, see §7). A control uses the 1146
RunAgentOnPeer obligation for that purpose. 1147

Parameters: 1148
Name Type Description

Sink/Id String Octopus Node ID of the Sink.

Sink/Attributes Container Attributes of the Sink’s Octopus Node. This container MAY be
omitted if the Node has no attributes.

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 48 of 91

TransferMode String Transfer Mode ID indicating in which mode the content is being
transferred. This ID can be a standard mode as defined below, or
a URN for a system-proprietary mode.

The following standard modes are defined:

ID Description

Render The sink is receiving the content for the
purpose of rendering.

Copy The sink is receiving a copy of the content.

Move The content is being moved to the sink.

CheckOut The content is being checked-out to the sink.
This is similar to Move but with the
distinction that the resulting state on the sink
may prevent any other move than a move back
to the source.

TransferCount Integer Integer value indicating how many instances of the state counters
associated with this control need to be transferred to the sink.

This parameter is OPTIONAL. If it is not present, only one
instance is being transferred. It should not be present when the
transfer mode is Render or Copy.

3.7.3 Export 1149

Description: Export to a foreign target system. 1150

Exporting to a foreign target system is an action that is used when the content has to be exported 1151
to a system where the original content license cannot be used. This could be a system with a 1152
different DRM technology, a system with no DRM technology, or a system with the same 1153
technology but under a situation that requires a license different from the original license. The 1154
system from which the transfer is being done is called the source. The target system to which the 1155
transfer is being done is called the sink. 1156

In the Extended Status result for the Describe, Check and Perform methods of this action, the 1157
following parameter shall be set: 1158
 1159

Name Type Description

ExportInfo Any Information that is relevant when exporting content to the target
system specified in the action parameters. The actual type and
content of this information is specific to each target system. For
example, for CCI-based systems, this would contain the CCI bits
to set for the exported content.

Parameters: 1160

 1161

Name Type Description

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 49 of 91

TargetSystem String System ID of the foreign system to which the export is being
made. This ID is a URN.

ExportMode String Export Mode ID indicating in which mode the content is being
exported. This ID can be a standard mode as defined below, or a
URN for a system-proprietary mode.

The following standard modes are defined:

ID Description

DontKnow The caller does not know what the sink’s
intended mode is. In this case, the control
program should assume that any of the
allowed modes for the TargetSystem can be
assumed by the sink, and should indicate any
restriction in the return status of the action
routines. For example, for a CCI-based
system, the control can return CCI bits that
will either allow the equivalent of Render or
Copy depending on what the license permits.

Render The sink is receiving the content for the
purpose of rendering, and will not retain a
usable copy of the content except for caching
purposes as specified by each target system.

Copy The sink is receiving a copy of the content.

Move The content is being moved to the sink.

Other input parameters may be required by specific target systems. 1162

3.7.3.1 Standard Target Systems 1163

3.7.3.1.1 Audio CD or DVD 1164

The standard TargetSystem ID ‘CleartextPcmAudio’ is used when the target system is an un-1165
encrypted medium onto which uncompressed PCM audio is written, such as a writeable audio 1166
CD or DVD. 1167

For this target system, the ExportInfo parameter is a single Integer parameter representing a 1168
copyright flag. This flag is indicated in the least significant bit of the integer value. 1169
 1170

Bit index Description

0 (LSB) When this flag is set, the Copyright bit or flag MUST be set in the format of the
recoded audio if the format supports the signaling of such a bit or flag.

 1171

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 50 of 91

4 Plankton Virtual Machine 1172

4.1 Introduction 1173

This section of the document provides the specification for Plankton, the virtual machine (VM) 1174
used by the Octopus Engine to execute control programs that govern access to content. 1175

In this specification, we explain some of the design decisions and where the Plankton VM fits in 1176
the Octopus architecture, then describe the basic elements of the VM, followed by more details 1177
about the memory model and instruction set. We then describe how programs are packaged in 1178
code modules. Finally, we document the system calls available to programs. 1179

4.2 Design Rationale 1180

The Plankton Virtual Machine (VM) is a traditional virtual machine, designed to be easy to 1181
implement using various programming languages, with a very small code footprint. It is based on 1182
a stack-oriented instruction set that could be called a TISC (Trivial Instruction Set Computer) 1183
architecture. The instruction set is designed to be minimalist, without much concern for 1184
execution speed or code density. Execution speed is a non-goal, and code density is an 1185
orthogonal problem: when compact code is required, data compression techniques will be used to 1186
compress the Plankton byte code, instead of making the byte code compact by design. 1187

The Plankton VM should be suitable as a target for both low-level and high-level programming 1188
languages. At a minimum, the virtual machine should naturally support Assembler, C and 1189
FORTH. It should be possible to implement compilers for other languages, such as Java or 1190
custom languages, without too much trouble. 1191

Finally, the Plankton VM is designed to be hosted within a host environment, not run directly on 1192
a processor or in silicon. The natural host environment for Plankton is the Octopus Engine. 1193

4.3 Architecture 1194

 1195

Octopus Host Application

Octopus Engine

Plankton VM
Plankton

Host
Environment

Code Module

System
Calls

Memory

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 51 of 91

The Plankton VM runs within the context of its host environment, which implements some of the 1196
functions needed by the VM as it executes programs. Typically, the Plankton VM runs within the 1197
Octopus Engine, which implements its host environment. 1198

The VM runs programs by executing instructions stored in byte codes in code modules. Some of 1199
these instructions can call functions implemented outside of the program itself by making a 1200
system call. System calls are either implemented by the Plankton VM itself, or delegated to the 1201
host environment. 1202

4.4 Basic VM Elements 1203

4.4.1 Execution Model 1204

The Plankton VM executes instructions stored in code modules as a stream of byte codes loaded 1205
in memory. The VM maintains a virtual register called the Program Counter (PC), which is 1206
incremented as instructions are executed. The VM executes each instruction, in sequence, until 1207
the OP_STOP instruction is encountered, an OP_RET instruction is encountered with an empty 1208
call stack, or a runtime exception occurs. A jump is specified either as a relative jump (specified 1209
as a byte offset from the current value of PC), or an absolute address. 1210

4.4.2 Memory Model 1211

The Plankton VM has a simple memory model. The VM memory is separated into the Data 1212
Memory Space and the Code Memory Space. 1213

The Data Memory is a single, flat, contiguous memory space, starting at address 0. The Data 1214
Memory is typically implemented as an array of bytes allocated within the heap memory of the 1215
host application or host environment. Any attempt to access memory outside of that space will 1216
cause a runtime exception that will cause the program execution to terminate. The data in the 1217
Data Memory can be accessed by memory-access instructions, which can be either 32-bit or 8-bit 1218
accesses. 32-bit memory accesses are done using the big-endian byte order. No assumptions are 1219
made with regards to alignment between the VM-visible memory and the host-managed memory 1220
(host CPU virtual or physical memory). 1221

The Code Memory is a flat, contiguous memory space, starting at address 0. The Code Memory 1222
is typically implemented as an array of bytes allocated within the heap memory of the host 1223
application or host environment. 1224

The VM MAY support loading more than one code module. If the VM loads several code 1225
modules concurrently, all the code modules share the same Data Memory (however, each 1226
module’s data is loaded at a different address), but each has its own Code Memory. This means 1227
that it is not possible for a jump instruction from one code module to cause a jump directly to 1228
code from another code module. 1229

4.4.3 Data Stack 1230

The VM has the notion of a Data Stack, which represents 32-bit data cells stored in the Data 1231
Memory. The VM maintains a virtual register called the Stack Pointer (SP). After reset, SP 1232
points to the end of the Data Memory, and the stack grows downward (when data is pushed on 1233
the Data Stack, the SP register is decremented). The 32-bit data cells on the stack are interpreted 1234
either as 32-bit addresses or 32-bit integers, depending on the instruction referencing the stack 1235

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 52 of 91

data. Addresses are unsigned integers. Unless otherwise specified, this specification considers all 1236
other 32-bit integer values on the Data Stack to be interpreted as signed integers. 1237

4.4.4 Call Stack 1238

The VM manages a Call Stack used for making subroutine calls. The values pushed on this stack 1239
cannot be read or written directly by any of the memory-access instructions. This stack is used 1240
internally by the VM when executing OP_JSR, OP_JSRR and OP_RET instructions. For a given 1241
VM implementation, the size of this return address stack will be fixed to a maximum, which will 1242
allow a certain number of nested calls that cannot be exceeded. 1243

4.4.5 Pseudo-registers 1244

The VM reserves a small address space at the beginning of the Data Memory to map pseudo-1245
registers. The memory addresses of those pseudo-registers are fixed. 1246
 1247

Address Size Name Description

0 4 ID 32-bit ID of the currently executing Code Segment.

This ID is chosen by the VM when a module is loaded.
The VM will change this register if it changes from the
Code Segment of one module to the Code Segment of
another module.

4 4 DS 32-bit value set to the absolute data address at which the
Data Segment of the currently executing module has been
loaded. This value is determined by the VM’s module
loader.

8 4 CS 32-bit value set to the absolute code address at which the
Code Segment of the currently executing module has been
loaded. This value is determined by the VM’s module
loader.

12 4 UM 32-bit value set to the absolute data address of the first
byte following the region of the Data Memory space where
the Data Segments of code modules have been loaded.

4.4.6 Memory Map 1248

The following shows the layout of the Data Memory and Code Memory spaces. 1249

4.4.6.1 Data Memory 1250
 1251

Address Range Description

0 to 15 Pseudo-registers

16 to 127 Reserved for future VM/System use

128 to 255 Reserved for application use

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 53 of 91

256 to DS-1 Unspecified. The VM MAY load the Data Segments of code
modules at any address at or above 256. If it chooses an address
larger than 256, the use of the address space between 256 and DS is
left unspecified. This means that the VM implementation is free to
use it any way it sees fit.

DS to UM-1 Image of the Data Segments of one or more code modules loaded by
the VM.

UM to End Shared address space. The code modules’ data and the Data Stack
share this space. The Data Stack is located at the end of that space
and grows down. End represents the last address of the data memory
space. The size of the data memory space is fixed by the VM based
on memory requirements contained in the code module and
implementation requirements.

4.4.6.2 Code Memory 1252
 1253

Address Range Description

0 to CS-1 Unspecified. The VM MAY load the Code Segments of code
modules at any address at or above 0. If it chooses an address larger
than 0, the use of the address space between 0 and CS is left
unspecified. This means that the VM implementation is free to use it
any way it sees fit.

CS to CS+size(Code
Segment)-1

Image of the Code Segment of a code module loaded by the VM.

4.4.7 Executing Routines 1254

Before executing a code routine, a VM implementation MUST reset the Data Stack Pointer to 1255
point to the top of the initialized Data Stack. The initialized Data Stack consists of the routine’s 1256
input data, and extends to the end of the Data Memory. The initialized Data Stack MAY be used 1257
as a way to pass input arguments to a routine. When there is no initialized Data Stack, the Data 1258
Stack Pointer points to the end of the Data Memory. The initial Call Stack MUST be either 1259
empty or contain a single terminal return address pointing to an OP_STOP instruction, which 1260
will force the execution or the routine to end on an OP_STOP instruction in case the routine 1261
finished with an OP_RET instruction. 1262

When the execution stops, either because a final OP_RET instruction with an empty call stack 1263
has been executed or a final OP_STOP instruction has been executed, any data left on the Data 1264
Stack is considered to be the output of the routine. 1265

4.4.8 Runtime Exceptions 1266

When executing instructions, any of the following conditions is considered to be a runtime 1267
exception, and MUST cause the execution to stop immediately: 1268

• An attempt to access data memory outside the current Data Memory address space. 1269

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 54 of 91

• An attempt to set the PC to, or cause the PC to reach a code address outside the current 1270
Code Memory address space. 1271

• An attempt to execute an undefined byte code. 1272

• An attempt to execute an OP_DIV instruction with a top-of-stack operand equal to 0. 1273

• An attempt to execute an OP_MOD instruction with a top-of-stack operand equal to 0. 1274

• An overflow or underflow of the Call Stack. 1275

4.5 Instruction Set 1276

The Plankton VM uses a very simple instruction set. The number of instructions is very limited, 1277
but is sufficient to express programs of arbitrary complexity. Instructions and their operands are 1278
represented by a stream of byte codes. The instruction set is stack-based: except for the 1279
OP_PUSH instruction, none of the instructions have any direct operands. All operands are read 1280
from the Data Stack, and results pushed on the Data Stack. The VM is a 32-bit VM: all the 1281
instructions operate on 32-bit stack operands, representing either memory addresses or signed 1282
integers. Signed integers are represented with 2’s complement binary encoding. 1283

In the following table, the stack operands for instructions with two operands are listed as A,B 1284
with the top-of-stack last (B). Unless otherwise specified, the ‘push’ will mean pushing a 32-bit 1285
value as the new top cell on the Data Stack. 1286

 1287
 1288

OP CODE Name Byte
Code

Operands Description

OP_NOP No Operation 0 Do Nothing
OP_PUSH Push Constant 1 N

(direct)
Push a 32-bit constant

OP_DROP Drop 2 Remove the top cell of the Data
Stack

OP_DUP Duplicate 3 Duplicate the top cell of the Data
Stack

OP_SWAP Swap 4 Swap top two stack cells
OP_ADD Add 5 A, B Push the sum of A and B (A+B)
OP_MUL Multiply 6 A, B Push the product of A and B (A*B)
OP_SUB Subtract 7 A, B Push the difference between A and

B (A-B)
OP_DIV Divide 8 A, B Push the division of A by B (A/B)
OP_MOD Modulo 9 A, B Push A modulo B (A%B)
OP_NEG Negate 10 A Push the 2’s complement negation

of A (-A)

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 55 of 91

OP_CMP Compare 11 A, B Push -1 if A less than B, 0 if A
equals B, and 1 if A greater than B

OP_AND And 12 A, B Push bit-wise AND of A and B (A
& B)

OP_OR Or 13 A, B Push the bit-wise OR of A and B (A
| B)

OP_XOR Exclusive Or 14 A, B Push the bit-wise eXclusive OR of
A and B (A ^ B)

OP_NOT Logical Negate 15 A Push the logical negation of A (1 if
A is 0, and 0 if A is not 0)

OP_SHL Shift Left 16 A, B Push A logically shifted left by B
bits (A << B)

OP_SHR Shift Right 17 A, B Push A logically shifted right by B
bits (A >> B)

OP_JMP Jump 18 A Jump to A
OP_JSR Jump to

Subroutine
19 A Jump to subroutine at absolute

address A. The current value of PC
is pushed on the call stack.

OP_JSRR

Jump to
Subroutine
(Relative)

20 A Jump to subroutine at PC+A. The
current value of PC is pushed on the
call stack.

OP_RET Return from
Subroutine

21 Return from subroutine to the return
address popped from the call stack.

OP_BRA Branch Always 22 A Jump to PC + A
OP_BRP Branch if

Positive
23 A, B Jump to PC+B if A > 0

OP_BRN Branch if
Negative

24 A, B Jump to PC+B if A < 0

OP_BRZ Branch if Zero 25 A, B Jump to PC+B if A is 0
OP_PEEK Peek 26 A Push the 32-bit value stored at

address A
OP_POKE Poke 27 A, B Store the 32-bit value A at address

B
OP_PEEKB Peek Byte 28 A Read the 8-bit value stored at

address A, 0-extend it to 32-bits and
push it on the Data Stack

OP_POKEB Poke Byte 29 A, B Store the least significant 8 bits of
value A at address B

OP_PUSHSP Push Stack
Pointer

30 Push the value of SP

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 56 of 91

OP_POPSP Pop Stack
Pointer

31 A Set the value of SP to A

OP_CALL System Call 32 A Perform system call with index A
OP_STOP Stop 255 Terminate Execution

 1289

4.6 Code Modules 1290

4.6.1 Module Format 1291

Code modules are stored in an atom-based format. Atoms are equivalent to the atom structure 1292
used in the MPEG-4 File Format: an atom consists of a 32-bit size represented by 4 bytes in big-1293
endian byte order, followed by a 4-byte type (usually bytes that correspond to ASCII values of 1294
letters of the Alphabet), followed by the payload of the atom (size-8 bytes). 1295

 1296

pkCM

pkDS

Data Segment Image

pkCS

Code Segment Image

pkEX

Number of Entries [N (32 bits)]
Each Entry:

[nameSize (8 bits)]
[name (nameSize * 8 bits)]
[offset (32 bits)]

...

 pkRQ

vmVersion (32 bits)
minDataMemory (32 bits)
minCallStack (32 bits)
flags (32 bits)

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 57 of 91

4.6.2 pkCM Atom 1297

The pkCM atom is the top-level code module atom. It contains a sequence of sub-atoms. This 1298
atom MUST contain exactly one pkDS, one pkCS and one pkEX atom. It MAY contain one 1299
pkRQ atom. It MAY also contain any number of other atoms that MUST be ignored if present. 1300
The order of the sub-atoms is not specified, so an implementation MUST NOT assume a specific 1301
order. 1302

4.6.3 pkDS Atom 1303

The pkDS atom contains a memory image of a Data Segment that can be loaded into the Data 1304
Memory. The memory image is represented by a sequence of bytes. The memory image consists 1305
of one header byte, followed by zero or more data bytes. The header byte encodes a version 1306
number that identifies the format of the following data bytes. 1307

Currently, only DataSegmentFormatVersion=0 is defined. In that format, the data bytes of the 1308
memory image represent a raw image to be loaded in memory. The VM loader only loads the 1309
data bytes of the memory image, not including the header byte. The VM loader MUST refuse to 1310
load an image in any other format version. 1311
 1312
0 DS0 DS1 …

4.6.4 pkCS Atom 1313

The pkCS atom contains a memory image of a Code Segment that can be loaded into the Code 1314
Memory. The memory image is represented by a sequence of bytes. The memory image consists 1315
of one header byte, followed by zero or mode data bytes. The header byte encodes a version 1316
number that identifies the format of the following data bytes. 1317

Currently, only CodeSegmentFormatVersion=0 is defined. In that format the next byte contains a 1318
header byte representing a version number that identifies the byte code encoding for the 1319
following bytes. ByteCodeVersion=0 specifies that the data bytes following the header byte 1320
contain a raw byte sequence with byte code values defined in this specification. The VM loader 1321
only loads the byte code portion of the data bytes, not including the two header bytes. 1322
 1323
0 0 C0 C1 …

4.6.5 pkEX Atom 1324

The pkEX atom contains a list of Export entries, referred to in this document as an Export Table. 1325
The first 4 bytes encode a 32-bit unsigned integer in big-endian byte order equal to the number of 1326
entries that follow. Each following Export entry consists of a name, encoded as one byte 1327
containing the name size S followed by S bytes containing the ASCII characters of the name, 1328
including a terminating 0, followed by a 32-bit unsigned integer in big-endian byte order 1329
representing the byte offset of the named entry point. This offset is from the start of the byte code 1330
data stored in the pkCS atom. 1331

Entry format: 1332
N C0 C1 … CN-2 0 O0 O1 O2 O3

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 58 of 91

Example: 1333
5 ‘M’ ‘A’ ‘I’ ‘N’ 0 0 0 0 64

Represents the entry point MAIN at offset 64. 1334

4.6.6 pkRQ Atom 1335

The pkRQ atom contains requirements that need to be met by the Virtual Machine 1336
implementation in order to execute this code. This atom is OPTIONAL. If no such atom is 1337
present in the code module, the VM will use a default implementation settings as MAY be 1338
defined by an implementation profile. 1339

This atom consists of an array of 32-bit unsigned integer values, one for each requirement field: 1340
 1341

Field Name Description

vmVersion Version ID of the VM Specification.

Set to 0 for this specification.

minDataMemorySize Minimum size in bytes of the data memory available to the code. This
includes the data memory used to load the image of the Data
Segment, as well as the data memory used by the Data Stack. The
VM MUST refuse to load the module if it cannot satisfy this
requirement.

minCallStackDepth Minimum number of nested subroutine calls (OP_JSR and
OP_JSRR) that must be supported by the VM. The VM MUST
refuse to load the module if it cannot satisfy this requirement.

flags Set of bit-flags to signal required features of the VM.

A VM implementation MUST refuse to load a code module that has
any unknown flag set. Since there are currently no flags defined, a
VM implementation compliant with this specification MUST check
that this flag is set to 0.

4.6.7 Module Loader 1342

The Plankton VM is responsible for loading code modules. 1343

When a code module is loaded, the Data Segment memory image encoded in the pkDS atom is 1344
loaded at a memory address in the Data Memory. That address is chosen by the VM Loader, and 1345
is stored in the DS pseudo-register when the code executes. 1346

The Code Segment memory image encoded in the pkCS atom is loaded at a memory address in 1347
the Code Memory. That address is chosen by the VM Loader, and is stored in the CS pseudo-1348
register when the code executes. 1349

When a code module is loaded, the special routine named “Global.OnLoad” is executed if this 1350
routine is found in the entries of the Export Table (the list of Export entries contained in the 1351
pkEX atom of the code module, described in §4.6.5) . This routine takes no arguments on the 1352
stack, and returns an integer status upon return, 0 signifying success, and a negative error code 1353
signifying an error condition. 1354

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 59 of 91

When a code module is unloaded (or when the VM that has loaded the module is disposed of), 1355
the special routine named “Global.OnUnload” is executed if it is found in the Export Table. This 1356
routine takes no arguments on the stack, and returns an integer status upon return, 0 signifying 1357
success, and a negative error code signifying an error condition. 1358

4.7 System Calls 1359

Plankton Programs can call functions implemented outside of their code module’s Code 1360
Segment. This is done through the use of the OP_CALL instruction, which takes an integer stack 1361
operand specifying the System Call Number to call. Depending on the system call, the code to be 1362
executed can be a Plankton byte code routine in a different code module (for instance, a library 1363
of utility functions), code executed directly by the VM in the VM’s native implementation 1364
format, or code in an external software module, such as the VM’s host environment. 1365

If an OP_CALL instruction is executed with an operand that contains a number that does not 1366
correspond to any system call, the VM SHALL behave as if the SYS_NOP system call was 1367
called. 1368

4.7.1 System Call Numbers Allocation 1369

Plankton reserves System Call Numbers 0 to 1023 for fixed system calls, that is, system calls that 1370
have the same number on all VM implementations. 1371

System Call Numbers 1024 to 16383 are available for the VM to assign dynamically. For 1372
example, the System Call Numbers returned by System.FindSystemCallByName can be allocated 1373
dynamically by the VM, and do not have to be the same numbers on all VM implementations. 1374

There are currently several fixed System Call Numbers specified: 1375
 1376

Mnemonic Number System Call

SYS_NOP 0 System.NoOperation

SYS_DEBUG_PRINT 1 System.DebugPrint

SYS_FIND_SYSTEM_CALL_BY_NAME 2 System.FindSystemCallByName

SYS_SYSTEM_HOST_GET_OBJECT 3 System.Host.GetObject

SYS_SYSTEM_HOST_SET_OBJECT 4 System.Host.SetObject

4.7.2 Standard System Calls 1377

The current specification contains a few standard system calls that are useful for writing control 1378
programs. These calls include the fixed-number system calls listed in the table above, as well as 1379
system calls that have dynamically determined numbers (i.e., their System Call Number is 1380
retrieved by calling the System.FindSystemCallByName system call with their name passed as 1381
the argument). 1382

All the system calls specified in this section that can return a negative error code MAY return 1383
error codes with any negative value. Section 4.7.4 defines specific values for which a description 1384
exists in this Plankton Virtual Machine specification. If negative error code values are returned 1385
that are not described in this specification, they MUST be interpreted as if they were the generic 1386

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 60 of 91

error code value FAILURE. Unless the specification for a system call gives a more specific 1387
description of certain error code values, the default descriptions from §4.7.4 apply. 1388

4.7.2.1 System.NoOperation 1389

Input: None 1390

Output: None 1391

Description: This call is a no-operation call. It just returns (does nothing else). It is used 1392
primarily for testing the VM. 1393

4.7.2.2 System.DebugPrint 1394

Input: 1395

Top of stack: 1396
Message

…

Message

Output: None 1398

: Address of a memory location containing a null-terminated string. 1397

Description: Prints a string of text to a debug output. If the VM implementation does not include 1399
a facility to output debug text (such as would be the case in a non-development environment), the 1400
VM MAY ignore the call and do nothing except pop the message address from the top of the 1401
stack. 1402

4.7.2.3 System.FindSystemCallByName 1403

Input: 1404

Top of stack: 1405
Name

…

Name

Output: 1408

: Address of a null-terminated ASCII string containing the name of the system call to look 1406
for. 1407

Top of stack: 1409
Id

…

Id

Description: Find the number of a system call, given its name. 1413

: System Call Number if the system call with that name is implemented, 1410
ERROR_NO_SUCH_ITEM if the system call is not implemented, or a negative error code if an 1411
error occurred. 1412

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 61 of 91

4.7.2.4 System.Host.GetLocalTime 1414

Input: None 1415

Output: 1416

Top of stack: 1417
LocalTime

…

LocalTime

Description: The local time is expressed as a 32-bit signed integer number equal to the number of 1419
minutes elapsed since January 1, 1970 00:00:00 UTC plus the difference in minutes between the 1420
local time and UTC, or a negative error code. 1421

: The current value of the local time of the host. 1418

4.7.2.5 System.Host.GetLocalTimeOffset 1422

Input: None 1423

Output: 1424

Top of stack 1425
LocalTimeOffset

…

LocalTimeOffset

Description: The time offset is expressed as a 32-bit signed integer number equal to the 1427
difference (in minutes) between local time and UTC time (i.e., LocalTime - UTC). 1428

: The current time offset (from UTC time) of the host. 1426

4.7.2.6 System.Host.GetTrustedTime 1429

Input: None 1430

Output: 1431

Top of stack 1432
TrustedTime

Flags

…

The robustness of the implementation of the following features is out of the scope of this 1433
specification. 1434

TrustedTime: The current value of the trusted time clock, or a negative error code if the trusted 1435
time is not available. The value is expressed as a 32-bit signed integer number equal to the 1436
number of minutes elapsed since January 1, 1970 00:00:00 UTC, or a negative error code. 1437

Flags: Bit-set of flags that further define the current state of the trusted clock. If an error has 1438
occurred (the value of TrustedTime is a negative error code), the value of Flags MUST be 0. 1439

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 62 of 91

The following flags are defined: 1440
Bit index (0 is LSB) Name Description

0 TIME_IS_ESTIMATE The value of TrustedTime is known not to be
at its most accurate value, and therefore
SHOULD be considered an estimate.

Description: This system call is only relevant on systems that implement a trusted clock that can 1441
be synchronized with a trusted time source and maintain a monotonic time counter. The value of 1442
the trusted time is not guaranteed to always be accurate, but the following properties are 1443
REQUIRED to be true: 1444

• The value of the trusted time is expressed as a UTC time value. (The trusted time is not 1445
in the local time zone, as the current locality usually cannot be securely determined.) 1446

• The trusted time never goes back. 1447

• The trusted clock does not advance faster than real time. 1448

Therefore, the value of TrustedTime is always between the value of the last synchronized time 1449
(synchronized with a trusted time source) and the current real time. If the system is able to 1450
determine that its trusted clock has been operating and updating continuously and normally 1451
without interruption since the last synchronization with a trusted time source, it can determine 1452
that the value of TrustedTime is not an estimate, but an accurate value, and set the 1453
TIME_IS_ESTIMATE flag to 0. 1454

If the trusted clock detects that a failure condition has occurred (hardware or software), and it is 1455
unable to return even an estimate of the trusted time, the implementation MUST return an error 1456
code, and the value of the returned Flags MUST be set to 0. 1457

4.7.2.7 System.Host.GetObject 1458

Input: 1459

Top of stack: 1460
Parent

Name

ReturnBuffer

ReturnBufferSize

…

Parent: 32-bit handle of the parent container. 1461

Name: Address of a null-terminated string containing the path to the requested object, relative to 1462
the parent container. 1463

ReturnBuffer: Address of a memory buffer where the value of the object is to be stored. 1464

ReturnBufferSize

Output: 1467

: 32-bit integer indicating the size in bytes of the memory buffer where the 1465
value of the object is to be stored. 1466

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 63 of 91

Top of stack: 1468
TypeId

Size

…

TypeId: Object type ID, or negative error code if the call failed. If the requested object does not 1469
exist, the error returned is ERROR_NO_SUCH_ITEM. If the buffer supplied for the return value 1470
is too small, the error returned is ERROR_INSUFFICIENT_SPACE. If the part of the object tree 1471
that is being accessed is access-controlled, and the calling program does not have permission to 1472
access the object, ERROR_PERMISSION_DENIED is returned. Other error codes MAY be 1473
returned. 1474

Size

Description: This system call is a generic interface that allows a program to access objects 1477
provided by the VM’s Host. 1478

: 32-bit integer indicating the size in bytes of the data returned in the buffer supplied by the 1475
caller, or the size required if the caller provided a buffer that was too small. 1476

4.7.2.7.1 Object Types 1479

There are four types of host objects: Strings, Integers, Byte Arrays and Containers. 1480
 1481

Object Type Type ID Name TypeId Value

Container OBJECT_TYPE_CONTAINER 0

Integer OBJECT_TYPE_INTEGER 1

String OBJECT_TYPE_STRING 2

Byte Array OBJECT_TYPE_BYTE_ARRAY 3

4.7.2.7.1.1 Byte Arrays 1482

The value of a Byte Array object is an array of 8-bit bytes. 1483

4.7.2.7.1.2 Strings 1484

The value of a String object is a null-terminated character string encoded in UTF-8. 1485

4.7.2.7.1.3 Integers 1486

The value of an Integer object is a 32-bit signed integer value. 1487

4.7.2.7.1.4 Containers 1488

Containers are generic containers that contain a sequence of any number of objects of any 1489
combination of types. Objects contained in a container are called the children of that container. 1490

The value of a container is a 32-bit container handle that is unique within a given VM instance. 1491

The root container ‘/’ has the fixed handle value 0. 1492

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 64 of 91

4.7.2.7.2 Object Names 1493

The namespace for host objects is a hierarchical namespace, where the name of a container’s 1494
child object is constructed by appending the name of the child to the name of the parent 1495
container, separated by a ‘/’ character. For example, if a container is named ‘/Node/Attributes’, 1496
and has a String child named ‘Type’, then ‘/Node/Attributes/Type’ refers to the child String. 1497

The root of the namespace is ‘/’. All absolute names start with a ‘/’. Names that do not start with 1498
a ‘/’ are relative names. Relative names are relative to a parent container. For example, the name 1499
‘Attributes/Type’, relative to parent ‘/Node’ is the object with the absolute name 1500
‘/Node/Attributes/Type’. 1501

4.7.2.7.2.1 Virtual Names and Virtual Objects 1502

Some objects can be accessed by using virtual names. Virtual names are names that are not 1503
names attached to host objects, but a convention to identify either unnamed child objects, child 1504
objects with different names, or virtual child objects (child objects that are not real children of 1505
the container, but created dynamically when requested). 1506

For any object, the following virtual names are defined: 1507
 1508

 Virtual Name Description

Virtual Name @Name Virtual string object: the name of the object.

If the object is unnamed, the value is an empty string.
Note that unnamed objects are only accessible through
the @<n> virtual name of a container object (see below).

Virtual Size @Size Virtual integer object. The integer value is equal to the
size in bytes required to store this object. For an integer,
this is 4. For a string, it is the number of bytes needed to
store the UTF-8 string plus a null byte terminator. For
byte array, this is the number of bytes in the array.

Virtual Type @Type Virtual integer object. The integer value is equal to the
object’s TypeId.

For any container, the following virtual names are defined: 1509
 1510

 Virtual Name Description

Virtual Index @<n> The <n>th object in a container. The first object in a
container has index 0. <n> is expressed as a decimal
number.

Example: if ‘Attributes’ is a container that contains 5
child objects, ‘Attributes/@4’ is the 5th child of the
container.

Virtual Size @Size Virtual integer object. The integer value is equal to the
number of objects in the container.

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 65 of 91

4.7.2.7.2.2 Examples 1511

Let’s take an example of a hierarchy of host objects: 1512

 1513
Name Value Children

Node 1 Name Value Children

Type “Device”

Name Value Children

Attributes 2 Name Value Children

Color “Red”

Name Value Children

Size 78

Name Value Children

Domain “TopLevel”

Calling System.Host.GetObject(parent=0, name=”Node”) returns the type ID 0 (Container), and 1514
writes the handle value 1 in the buffer supplied by the caller. (The size of the value is 4 bytes.) 1515

Calling System.Host.GetObject(parent=0, name=”Node/Attributes/Domain”) returns the type ID 1516
2 (String), and writes the string “TopLevel” in the buffer supplied by the caller. (The size of the 1517
value is 9 bytes.) 1518

Calling System.Host.GetObject(parent=1, name=”Attributes/@1”) returns the type ID 1 1519
(Integer), and writes the integer 78 in the buffer supplied by the caller. (The size of the value is 4 1520
bytes.) 1521

Calling System.Host.GetObject(parent=0, name=”DoesNotExist”) returns the error code 1522
ERROR_NO_SUCH_ITEM. 1523

4.7.2.8 System.Host.SetObject 1524

Input: 1525

Top of stack: 1526
Parent

Name

ObjectAddress

ObjectType

ObjectSize

…

Parent: 32-bit handle of the parent container. 1527

Name: Address of a null-terminated string containing the path to the object, relative to the parent 1528
container. 1529

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 66 of 91

ObjectAddress: Address of a memory buffer where the value of the object is stored. If the 1530
address is 0, the call is interpreted as a request to destroy the object. The data at the address 1531
depends on the type of the object. 1532

ObjectType: The type ID of the object. 1533

ObjectSize

Output: 1538

: 32-bit integer indicating the size in bytes of the memory buffer where the value of 1534
the object is stored. For Integer objects, the size MUST be set to 4. For String objects, the size is 1535
the size of the memory buffer, including the null terminator. For Byte Array objects, the size is 1536
the number of bytes in the array. 1537

Top of stack: 1539
ResultCode

…

ResultCode

Description: This system call is a generic interface that allows a program to create, write and 1546
destroy objects provided by the VM’s host. The description of the object names and types is the 1547
same as for System.Host.GetObject. 1548

: 0 if the call succeeded, or negative error code if the call failed. If the call is a request 1540
to destroy an object and the requested object does not exist, or the call is a request to create or 1541
write an object and the object’s parent does not exist, the error code returned is 1542
ERROR_NO_SUCH_ITEM. If the part of the object tree that is being accessed is access-1543
controlled, and the calling program does not have permission to access the object, 1544
ERROR_PERMISSION_DENIED is returned. Other error codes MAY be returned. 1545

Not all host objects support being written to or destroyed, and not all containers support having 1549
child objects created. When a SetObject call is made for an object that does not support the 1550
operation, ERROR_PERMISSION_DENIED is returned. 1551

4.7.2.8.1 Creating a Container 1552

There is a special case where the object refers to a container and the ObjectAddress is not 0. In 1553
this case the ObjectSize parameter MUST be set to 0. The value of ObjectAddress is ignored. If 1554
the container already exists, nothing is done, and a SUCCESS ResultCode is returned. If the 1555
container does not exist, and the parent of the container is writeable, an empty container is 1556
created. 1557

4.7.2.8.2 Destroying an Object 1558

If the ObjectAddress is 0, the call is interpreted as a request to destroy the object. 1559

4.7.2.9 Octopus.Links.IsNodeReachable 1560

Input: 1561

Top of stack: 1562
NodeId

…

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 67 of 91

NodeId

Output: 1565

: Address of a null-terminated string containing the ID of the target Link to be tested for 1563
reachability. 1564

Top of stack: 1566
ResultCode

StatusBlockAddress

…

ResultCode: An integer value. The result value is 0 if the Node is reachable, or a negative error 1567
code if it is not. 1568

StatusBlockAddress

Description: This system call is used by control programs to check whether a given Node is 1570
reachable from the Node associated with the entity hosting this instance of the Plankton VM. 1571

: 0 SHALL be returned. 1569

4.7.2.10 System.Host.SpawnVm 1572

Input: 1573

Top of stack: 1574
ModuleId

IdentityRequirementsBlockAddress

…

ModuleId: Address of a null-terminated string containing the ID of the code module to be loaded 1575
into the VM. It is up to the specification of the VM’s host to describe the mechanism by which 1576
the actual code module corresponding to this module ID is to be located. 1577

IdentityRequirementsBlockAddress

Output: 1580

: Address of an IdentityRequirementsBlock as defined below. 1578
If this address is 0, no identity requirements are set. 1579

Top of stack: 1581
ResultCode

VmHandle

…

ResultCode: An integer value. The result value is 0 if the call was successful, or a negative error 1582
code if it failed. 1583

VmHandle

Description: This system call is used by control programs to request that a new instance of a 1587
Plankton Virtual Machine be created, and a code module loaded. 1588

: An integer value specifying the handle to the instance of the VM that has been 1584
created. (If the call failed, this is set to 0.) That handle is only guaranteed to be unique within the 1585
VM in which this call is made. 1586

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 68 of 91

The caller MAY specify identity and signature requirements for the code module that is to be 1589
loaded by providing an IdentityRequirementsBlock that contains a list of identity names that are 1590
acceptable, and that indicates whether content-key-based signatures are required. If the code 1591
module to be loaded does not meet the requirements, the system call fails with a ResultCode 1592
equal to ERROR_NO_SUCH_ITEM. The requirements are met if and only if the 1593
RequireContentKeySignature requirement of the IdentityRequirementsBlock is met and one or 1594
more of the identity names listed in the IdentityRequirementsBlock is included in the list of the 1595
identity names applicable to the code module to be loaded. When IdentityNameCount is 0, the 1596
list of identity names is empty and the identity requirement is met. 1597

The host of the newly created VM exposes the same host objects as the ones exposed to the 1598
caller, with the exception that the host object “/Octopus/Runtime/Parent/Id” is set to the identity 1599
of the caller. This host object is a container. The children of this container are objects of type 1600
String, each with a value representing a name. The semantics and specific details of those names 1601
are specified by the specification of the VM’s host. 1602

When the VM that is running the code for the caller terminates, any spawned VM that has not 1603
been explicitly released by calling System.Host.ReleaseVm is automatically released by the 1604
system as if System.Host.ReleaseVm had been called. 1605

IdentityRequirementsBlock: 1606
 1607

Name Type

RequireContentKeySignature 32-bit unsigned integer

IdentityNameCount 32-bit unsigned integer

IdentityNameAddress<1> 32-bit address

… …

IdentityNameAddress<N> 32-bit address

RequireContentKeySignature: An integer value equal to 0 or 1. When the value is 1, the code 1608
module meets the requirement if and only if there is a set of valid direct or indirect signatures 1609
with the same content keys as the ones that are required to assert the validity of the caller. When 1610
the value is 0, content key signatures are not required. 1611

IdentityNameCount: The number of 32-bit addresses following this field. 1612

IdentityNameAddress<n>

4.7.2.11 System.Host.CallVm 1615

: Address of a null-terminated UTF-8 encoded string specifying an 1613
acceptable identity name. 1614

Input: 1616

Top of stack: 1617
VmHandle

EntryPoint

ParameterBlockAddress

ParameterBlockSize

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 69 of 91

ReturnBufferAddress

ReturnBufferSize

…

VmHandle: An integer value specifying the handle of a VM that was created by calling 1618
System.Host.SpawnVm. 1619

EntryPoint: Address of a null-terminated string that specifies the name of the entry point to call. 1620
This name needs to match one of the entry points in the Export Table of the code module that 1621
was loaded into the VM instance that corresponds to the VmHandle parameter. 1622

ParameterBlockAddress: Address of a memory block that contains data to be passed to the 1623
callee. If no parameters are passed to the callee, this is set to 0. 1624

ParameterBlockSize: Size in bytes of the memory block at address ParameterBlockAddress, or 0 1625
if ParameterBlockAddress is 0. 1626

ReturnBufferAddress: Address of a memory buffer where the caller can receive data from the 1627
callee. If the caller does not expect any data back from the callee, this is set to 0. 1628

ReturnBufferSize

Output: 1631

: Size in bytes of the memory buffer at address ReturnBufferAddress, or 0 if 1629
ReturnBufferAddress is 0. 1630

Top of stack: 1632
SystemResultCode

CalleeResultCode

ReturnBlockSize

…

SystemResultCode: An integer value. The result value is 0 if the call was successful, or a 1633
negative error code if it failed. This value is determined by the system, not by the callee. Success 1634
only indicates that the system was able to successfully find the routine to call, execute the routine 1635
and get the return value from the routine. The return value from the routine itself is returned in 1636
the CalleeResultCode value. 1637

CalleeResultCode: An integer value. This is the value returned by the callee. 1638

ReturnBlockSize

Description: This system call is used by control programs to call routines that are implemented in 1642
code modules loaded in VM instances created using the System.Host.SpawnVm system call. 1643

: The size in bytes of the data returned in the buffer supplied by the caller, or the 1639
size required if the caller provided a buffer that was too small. If no data was returned by the 1640
callee, the value is 0. 1641

The called routine MUST comply with the following interface conventions: 1644

When the routine is called, the stack contains the value ParameterBlockSize supplied by the 1645
caller, indicating the size of the parameter block at the top, followed by ParameterBlockSize 1646
bytes of data. If the size is not a multiple of 4, the data on the stack will be padded with 0-value 1647
bytes to ensure that the Stack Pointer remains a multiple of 4. 1648

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 70 of 91

Top of stack: 1649
ParameterBlockSize

…data…

Upon return, the routine MUST provide the following return values on the stack: 1650

Top of stack: 1651
ResultCode

ReturnBlockAddress

ReturnBlockSize

…

ResultCode: An integer value. The result value is 0 if the call was successful, or a negative error 1652
code if it failed. 1653

ReturnBlockAddress: Address of a memory block that contains data to be returned to the caller. If 1654
no data is returned, this is set to 0. 1655

ReturnBlockSize

4.7.2.12 System.Host.ReleaseVm 1658

: Size in bytes of the memory block at address ReturnBlockAddress, or 0 if 1656
ReturnBlockAddress is 0. 1657

Input: 1659

Top of stack: 1660
VmHandle

…

VmHandle

Output: 1663

: An integer value. Handle of a VM that was created by calling 1661
System.Host.SpawnVm. 1662

Top of stack: 1664
ResultCode

…

ResultCode

Description: This system call is used by control programs to release a VM that was spawned by a 1667
previous call to System.Host.SpawnVm. Any VMs spawned by the released VM are released, 1668
and so on, recursively. 1669

: An integer value. The result value is 0 if the call was successful or a negative error 1665
code if it failed. 1666

4.7.3 Standard Data Structures 1670

The following are standard data structures used by some of the standard system calls. They may 1671
also be used by any custom system call, as functions of the VM’s host. 1672

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 71 of 91

4.7.3.1 Standard Parameters 1673

4.7.3.1.1 Parameter Block 1674

ParameterBlock: 1675
Name Type

Name NameBlock

Value ValueBlock

Name: Name of the parameter 1676

Value: Value of the parameter 1677

4.7.3.1.2 Extended Parameter Block 1678

ExtendedParameterBlock: 1679
Name Type

Flags 32-bit bit field

Parameter ParameterBlock

Flags: Vector of Boolean flags 1680

Parameter: Parameter block containing a name and a value 1681

4.7.3.1.3 Name Block 1682

NameBlock: 1683
Name Type

Size 32-bit integer

Characters Array of 8-bit characters

Size: 32-bit unsigned integer equal to the size in bytes of the Characters field that follows. If this 1684
value is 0, the Characters field is left empty (nothing follows). 1685

Characters: NULL-terminated UTF-8 string 1686

4.7.3.1.4 Value Block 1687

ValueBlock: 1688
Name Type

Type 32-bit integer

Size 32-bit integer

Data Array of 8-bit bytes

Type: 32-bit type identifier. The following types are defined: 1689
 1690

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 72 of 91

Type Identifier Type Name Description

0 Integer 32-bit integer value, encoded as 4 8-bit bytes in
big-endian byte order. Unless otherwise
specified, the value is considered signed.

1 Real 32-bit floating point value, encoded as IEEE-754
in big-endian byte order.

2 String Null-terminated UTF-8 string.

3 Date 32-bit unsigned integer value, representing the
number of minutes elapsed since January 1, 1970
00:00:00. Unless otherwise specified, the value is
considered to be a UTC date. The most
significant bit MUST be 0.

4 Parameter ParameterBlock structure.

5 ExtendedParameter ExtendedParameterBlock structure.

6 Resource The value is a resource. The resource here is
referenced by ID: the Data field of the value is a
null-terminated ASCII string containing the ID of
the resource that should be de-referenced to
produce the actual data.

7 ValueList An array of values (encoded as a
ValueListBlock).

8 ByteArray The value is an array of 8-bit bytes.

Size: 32-bit unsigned integer equal to the size in bytes of the Data field that follows. If this value 1691
is 0, the Data field is left empty (nothing follows). 1692

Data: Array of 8-bit bytes representing a value. The actual bytes depend on the data encoding 1693
specified by the Type field. 1694

4.7.3.1.5 Value List Block 1695

ValueListBlock: 1696
Name Type

ValueCount 32-bit integer

Value0 ValueBlock

Value1 ValueBlock

… …

ValueCount: 32-bit unsigned integer equal to the number of ValueBlock structures that follow. If 1697
this value is 0, no ValueBlock follows. 1698

Value0, Value1, …: Sequence of 0 or more ValueBlock structures. 1699

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 73 of 91

4.7.3.2 Standard Extended Status Block 1700

The standard ExtendedStatusBlock is a data structure typically used to convey extended 1701
information as a return status from a call to a routine or a system call. It is a generic data 1702
structure that can be used in a variety of contexts, with a range of different possible values for its 1703
fields. 1704

ExtendedStatusBlock: 1705
Name Type

GlobalFlags 32-bit bit field

Category 32-bit integer

SubCategory 32-bit integer

LocalFlags 32-bit bit field

CacheDuration CacheDurationBlock

Parameters ValueListBlock

GlobalFlags: Boolean flags whose semantics are the same regardless of the Category field. The 1706
position and meaning of the flags are defined by profiles that use standard ExtendedStatusBlock 1707
data structures. 1708

Category: Integer unique identifier of a category to which this status belongs. The category 1709
identifier values are defined by profiles that use standard ExtendedStatusBlock data structures. 1710

SubCategory: Integer identifier (unique within the category) of a subcategory that further 1711
classifies the type of status described by this block. 1712

LocalFlags: Boolean flags whose semantics are local to the category and subcategory of this 1713
status block. The position and meaning of the flags are defined by profiles that define and use the 1714
semantics of the category. 1715

CacheDuration: Indicates the duration for which this status can be cached (i.e., how long it 1716
remains valid). See the CacheDurationBlock definition below for the actual value of the duration. 1717

Parameters: List of 0 or more ValueBlocks. Each ValueBlock contains a parameter encoded as a 1718
value of type Parameter or ExtendedParameter. Each parameter binds a name to a typed value, 1719
and is used to encode flexible variable data that describes the status block in more detail than just 1720
the category, subcategory, cache duration and flags. 1721

CacheDurationBlock: 1722
Name Type

Type 32-bit integer

Value 32-bit integer

Type: Integer identifier for the type of the value. The following types can be used: 1723
 1724

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 74 of 91

0 The value is a 32-bit unsigned integer that represents the number of seconds from the
current time that the status can be cached. (A value of 0 means that the status cannot be
cached at all, and therefore can only be used once.) The special value 0xFFFFFFFF is
interpreted as an infinite duration; the status can be cached indefinitely.

1 The value is a 32-bit unsigned integer that represents an absolute local time, expressed as
the number of minutes elapsed since January 1, 1970 00:00:00. The most significant bit
MUST be 0.

Value: 32-bit integer. The meaning of this value depends on the Type field. 1725

4.7.4 Standard Result Codes 1726

Standard result codes are used in various APIs. Other result codes may be defined for use in 1727
more specific APIs. 1728
 1729
Integer
Value

Name Description

0 SUCCESS Success

-1 FAILURE Unspecified failure

-2 ERROR_INTERNAL An internal (implementation) error has
occurred

-3 ERROR_INVALID_PARAMETER A parameter has an invalid value

-4 ERROR_OUT_OF_MEMORY Not enough memory available to complete
successfully

-5 ERROR_OUT_OF_RESOURCES Not enough resources available to
complete successfully

-6 ERROR_NO_SUCH_ITEM The requested item does not exist or was
not found

-7 ERROR_INSUFFICIENT_SPACE Not enough memory space supplied by
the caller (typically used when a return
buffer is too small)

-8 ERROR_PERMISSION_DENIED The permission to perform the call is
denied to the caller

-9 ERROR_RUNTIME_EXCEPTION An error has occurred during the
execution of byte code

-10 ERROR_INVALID_FORMAT Error caused by data with an invalid
format (for example, invalid data in a
code module)

 1730

 1731

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 75 of 91

5 Octopus Object Serialization 1732

5.1 Introduction 1733

The Octopus Object Serialization specification provided in this section of the document defines 1734
an encoding-neutral way of computing a canonical byte sequence (CBS) for Octopus objects. 1735
The purpose of this canonical byte sequence is the computation of digests for the digital 1736
signature of objects. This byte sequence is independent of the way the objects are represented or 1737
transmitted. 1738

5.2 Canonical Byte Sequence Algorithm 1739

The canonical byte sequence algorithm consists of constructing sequences of bytes from values 1740
of fields. Each field has a value with a simple type or a compound type. Some fields can be 1741
specified to be optional (the field may be present or omitted). 1742

5.2.1 Simple Types 1743

Simple types are: 1744

• Integer 1745

• String 1746

• Byte 1747

• Boolean 1748

5.2.2 Compound Types 1749

Compound types consist of one or more subfields. Each subfield has a value with a simple or 1750
compound type. 1751

Compound types are either heterogeneous or homogenous: 1752

• Heterogeneous: one or more subfield values of different types (simple or compound) 1753

• Homogeneous: one or more subfield values of the same type (simple or compound) 1754

5.2.3 Encoding Rules 1755

The canonical byte sequence of a field that is always present is obtained by applying the 1756
appropriate encoding rule (depending on the type of the field) to the field’s value. The canonical 1757
byte sequence of a field that is specified to be optional is obtained by applying the encoding rule 1758
for optional fields, as defined below. In the following encoding rule descriptions, the term byte 1759
means an 8-bit value (octet): 1760

Optional Fields 1761
 1762
0

or 1763

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 76 of 91

 1764
1 Field

If an optional field is present, its value is serialized as the byte value 1 followed by the canonical 1765
byte sequence of the field value. If it is omitted, its value is serialized as the byte value 0. 1766

Heterogeneous Compound 1767
 1768
Field 0 Field 1 Field 2 …

The canonical byte sequence for a heterogeneous compound is the concatenation of the canonical 1769
byte sequences of each subfield value. Optional fields are not skipped, but serialized according to 1770
the rule for optional fields. 1771

Homogeneous Compound 1772
 1773
Field count Field 0 Field 1 …

The canonical byte sequence for a homogeneous compound is the subfield count, encoded as a 1774
sequence of 4 bytes in big-endian order, followed by the concatenation of each subfield value’s 1775
canonical byte sequence. If the subfield count is 0, then nothing follows the 4-byte field count; in 1776
this case, all 4 bytes have the value 0. 1777

Integer 1778
 1779
I0 I1 I2 I3

The canonical byte sequence for an integer field is the 32-bit integer value, encoded as a 1780
sequence of 4 bytes, in big-endian order. 1781

String 1782
 1783
Byte Count Byte 0 Byte 1 …

The canonical byte sequence for a string field is a byte count followed by the UTF-8 encoded 1784
byte sequence for the string (not null-terminated). 1785

The Byte Count of the encoded byte sequence is encoded as a sequence of 4 bytes in big-endian 1786
order. 1787

The Byte Count is followed by the sequence of bytes of the UTF-8 encoded string. 1788

Byte 1789
 1790
B

The canonical byte sequence for a byte field is its 8-bit value. 1791

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 77 of 91

Boolean 1792
 1793
B

The canonical byte sequence for a Boolean field is an 8-bit value: 0 for false, and 1 for true. 1794

5.3 Application to Octopus Objects 1795

The canonical byte sequence for an Octopus object is the concatenation of the canonical byte 1796
sequences of each of its fields, in the order they are defined in the object model (see §2). 1797

For heterogeneous compound types, the order of the fields is the one specified in the type 1798
definition. For homogeneous compound types, the order of the elements is specified in the 1799
following sections 5.3.1 through 5.3.4. 1800

5.3.1 Attributes 1801

An Octopus object’s ‘attributes’ field, as well as the ‘attributes’ field of attributes of type 1802
ListAttribute, is encoded as a homogeneous compound in which the fields are all of type 1803
Attribute (§2.4.1.1) , and are sorted lexicographically by their ‘name’ field. Attributes contained 1804
in the ‘attributes’ field of attributes of type ArrayAttribute are not sorted; they are serialized in 1805
their array order. 1806

5.3.2 Extensions 1807

An Octopus object’s internal extensions (§2.4.1.2) are sorted lexicographically by their ‘id’ field. 1808

For internal extensions, the ‘ExtensionData’ field is NOT used in the computation of the 1809
canonical byte sequence. For such extensions, if they need to be included in the computation of a 1810
digest for the purpose of a signature, they will contain a ‘digest’ field that will represent the 1811
digest of the actual data carried in the ‘ExtensionData’. For each type of extension data, a 1812
definition will be given that allows the computation of its canonical byte sequence. 1813

5.3.3 Controller 1814

ContentKey references are sorted lexicographically by their ‘id’ field. 1815

5.3.4 ScubaKeys 1816

The keys in the ‘publicKeys’, ‘privateKeys’ and ‘secretKeys’ fields (see §6.6.1) are sorted 1817
lexicographically by their ‘id’ field. 1818

5.4 Example 1819
 1820
class X {
 int i;
 int j;
}

class A {
 int a[];
 string s;
}

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 78 of 91

class B extends A {
 {X optional_x;}
 X x;
 (string toDiscardInCano;)
 string s2;
}

The canonical byte sequence of an instance of class B where a[] = {7,8,9}, s = “Abc”, x = {5,4}, 1821
s2=””, and optional_x is not present is serialized as: 1822
 1823
3 7 8 9 3 “Abc” as

UTF-8
0 Cano(X) 0

4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 3 bytes 1 byte 8 bytes 4 bytes

where Cano(X) is: 1824
 1825
5 4

4 bytes 4 bytes

 1826

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 79 of 91

6 Scuba Key Distribution 1827

6.1 Introduction 1828

This section of the document provides the specification for Scuba, a key distribution system that 1829
has been designed to fit very naturally within the Octopus architecture. 1830

The basic principle behind Scuba is to use the Octopus Link objects (§2.3.2) to distribute keys, in 1831
addition to their primary purpose of establishing relationships between Node objects. An 1832
Octopus Control object contains a control program that decides whether or not a requested action 1833
should be granted. That control program often checks whether a specific Octopus Node is 1834
reachable via a chain of Octopus Links. Scuba makes it possible to take advantage of the 1835
existence of that chain of Links to facilitate the distribution of a key such that it is available to 1836
the Octopus Engine that is executing the control. 1837

Each Octopus Node object (§2.3.1) used in an Octopus deployment that uses the Scuba Key 1838
Distribution system has Scuba keys. Those keys are used to encrypt content keys and other 1839
Nodes’ Scuba keys. Each Octopus Link object created for use in the same deployment contains 1840
some cryptographic Scuba data payload that allows key information to be derived when chains of 1841
Links are processed by the Octopus Engine. 1842

With Nodes and Links carrying Scuba keys this way, given a chain of Links from a Node A to a 1843
Node Z, any entity (such as the Octopus Engine of a client host application) that has access to the 1844
private Scuba sharing keys of A also has access to the private Scuba sharing keys of Z. Having 1845
access to Z’s private Scuba sharing keys gives the entity access to any content key encrypted 1846
with those keys. 1847

Each Octopus deployment will select a public key cipher (such as RSA) and a symmetric secret 1848
key cipher (such as AES) to use for the implementation of this key distribution system. 1849

6.2 Nodes, Entities and Scuba Keys 1850

6.2.1 Entities 1851

In an Octopus system, Nodes are data objects, not active participants. Active participants, in this 1852
context, are called entities. Examples of entities are media players, devices, content packagers, 1853
etc. Entities typically have Octopus Nodes associated with them. An entity that consumes content 1854
uses an Octopus Engine and manages at least one Node object that constitutes its Octopus 1855
Personality. An entity is assumed to have access to all the data of the Node objects it manages, 1856
including all the private information of those objects. 1857

6.2.2 Nodes 1858

Node objects that participate in a Scuba key distribution system contain Scuba keys as part of 1859
their data. There are two categories of Scuba keys: sharing keys and confidentiality keys. In each 1860
category there are three types of keys: public keys, private keys, and secret symmetric keys. The 1861
following sections define the different key categories and types that Scuba can use. 1862

Note that a specific deployment of the technology may use a subset of these keys. For example, a 1863
system could be configured to only work with public and private keys, omitting the use of secret 1864

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 80 of 91

symmetric keys. Or a system could be deployed without provisioning Nodes with confidentiality 1865
keys if it only makes use of sharing keys. 1866

Public keys MUST be carried as internal extensions of the Node object. Private and symmetric 1867
secret keys MUST NOT be carried as internal extensions of Node objects. 1868

6.2.2.1 Sharing Keys 1869

Sharing keys are key pairs and/or symmetric keys that are shared by a Node N and all the Nodes 1870
Px for which there exists a Link from Px to N that contains Scuba key derivation extensions. We 1871
refer to this as downstream sharing. 1872

• Scuba Sharing Public Key 1873

Kpub-share[N] 1874

This is the public part of a pair of public/private keys for the public key cipher. 1875
This key typically comes with a certificate so that its credentials can be verified by 1876
entities that want to cryptographically bind confidential information to it. 1877

• Scuba Sharing Private Key 1878

Kpriv-share[N] 1879

This is the private part of the public/private key pair. The entity that manages Node 1880
N is responsible for ensuring that this private key is kept secret. For that reason, this 1881
private key will be stored and transported separately from the rest of the Node 1882
information. This private key will be shared downstream with other Nodes through 1883
the key derivation extensions of Links. 1884

• Scuba Sharing Symmetric Key 1885

Ks-share[N] 1886

This is a key to be used with the symmetric cipher. Like the private key, this key is 1887
confidential, so the entity that manages Node N is responsible for keeping this key 1888
secret. This secret key will be shared downstream with other Nodes through the key 1889
derivation extensions of Links. 1890

6.2.2.2 Confidentiality Keys 1891

Confidentiality keys are key pairs and/or symmetric keys that are only known to the entity that 1892
manages the Node to which they belong. The difference between those keys and the sharing keys 1893
described above is that confidentiality keys will not be shared with other Nodes through the 1894
Scuba key derivation extensions in Links. 1895

• Scuba Confidentiality Public Key 1896

Kpub-conf[N] 1897

This is the public part of a pair of public/private keys for the public key cipher. 1898
This key typically comes with a certificate so that its credentials can be verified by 1899
entities that want to cryptographically bind confidential information to it. 1900

• Scuba Confidentiality Private Key 1901

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 81 of 91

Kpriv-conf[N] 1902

This is the private part of the public/private key pair. The entity that manages Node 1903
N is responsible for ensuring that this private key is kept secret. For that reason, this 1904
private key will be stored and transported separately from the rest of the Node 1905
information. 1906

• Scuba Confidentiality Symmetric Key 1907

Ks-conf[N] 1908

This is a key to be used with the symmetric cipher. Like the private key, this key is 1909
confidential, so the entity that manages Node N is responsible for keeping this key 1910
secret. 1911

6.3 Cryptographic Elements 1912

Scuba can be implemented using different cryptographic algorithms. Scuba is not restricted to 1913
any specific choice of cryptographic algorithm. Nevertheless, it is necessary that, for a given 1914
deployment or profile, all participating entities agree on a set of supported algorithms. Any 1915
deployment will include support for at least one public key cipher (such as RSA) and/or one 1916
symmetric key cipher (such as AES). 1917

For the purpose of this document, we will use the following notations for referring to 1918
cryptographic functions: 1919

Ep(Kpub[N], M) means “the message M encrypted with the public key Kpub of Node N, using a 1920
public key cipher” 1921

Dp(Kpriv[N], M) means “the message M decrypted with the private key Kpriv of Node N, using 1922
a public key cipher” 1923

Es(Ks[N], M) means “the message M encrypted with the symmetric key Ks of Node N, using a 1924
symmetric key cipher” 1925

Ds(Ks[N], M) means “the message M decrypted with the symmetric key Ks of Node N, using a 1926
symmetric key cipher” 1927

6.4 Binding of Content Keys 1928

There are two types of cryptographic binding used in Scuba. Binding a content key to a target 1929
Octopus Node’s sharing keys means making that key available to all entities that share the 1930
private Scuba sharing keys of that target Node. Binding a content key to a Node’s confidentiality 1931
keys means making that key available only to the entity that manages that Node. Binding is done 1932
by encrypting the key CK carried in a ContentKey object using one or both of the following 1933
methods: 1934

• Public Binding 1935

Create a ContentKey object that contains Ep(Kpub[N], CK) 1936

• Symmetric Binding 1937

Create a ContentKey object that contains Es(Ks[N], CK) 1938

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 82 of 91

Whenever possible, Symmetric Binding SHOULD be used, as it uses a less computationally 1939
intensive algorithm, and therefore makes it less onerous for the receiving entity. However, the 1940
entity that creates the ContentKey object does not always have access to Ks[N]. In that case, the 1941
Public Binding MUST be used. Kpub[N] is not confidential and therefore can easily be made 1942
available to entities that need to perform the Public Binding. Kpub[N] will usually be made 1943
available to entities that need to bind content keys, accompanied by a certificate that can be 1944
inspected by the entity to decide whether Kpub[N] is indeed the key of a Node that can be trusted 1945
to handle the content key in accordance with some agreed-upon policy. 1946

6.5 Derivation of Scuba Keys using Links 1947

To allow an entity to have access to the Scuba sharing keys of all the Nodes reachable from its 1948
Personality Node, Link objects contain a Scuba extension payload. That payload allows any 1949
entity that has access to the private/secret Scuba keys of the Link’s ‘from’ Node to also have 1950
access to the private/secret Scuba keys of the Link’s ‘to’ Node. This way, an entity can decrypt 1951
any content key bound to a Node that is reachable from its Personality Node (if the binding was 1952
done using the target Node’s sharing keys). 1953

When an Octopus Engine processes Link objects, it processes the Scuba payload of each Link in 1954
order to update an internal chain of Scuba keys to which it has access. 1955

The Scuba extension payload of a Link L from Node F to Node T SHALL consist of either: 1956

• Public Derivation information 1957

Ep(Kpub-share[F], {Ks-share[T],Kpriv-share[T]}) 1958

or 1959

• Symmetric Derivation information 1960

Es(Ks-share[F], {Ks-share[T],Kpriv-share[T]}) 1961

where {Ks-share[T],Kpriv-share[T]} is a data structure containing Ks-share[T] and Kpriv-1962
share[T]. 1963

The Public Derivation information is used to convey the private Scuba sharing keys of Node T, 1964
Ks-share[T] and Kpriv-share[T], to any entity that has access to the private Scuba key of Node F, 1965
Kpriv-share[F]. 1966

The Symmetric Derivation information is used to convey the private Scuba sharing keys of Node 1967
T, Ks-share[T] and Kpriv-share[T], to any entity that has access to the symmetric Scuba sharing 1968
key of Node F, Ks-share[F]. 1969

Just as for binding content keys to Nodes, the preferred payload to include in a Link is the 1970
Symmetric Derivation information. This is only possible when the Link creator has access to Ks-1971
share[F]. If not, then the Link creator will fall back to including the Public Derivation 1972
information as the Scuba payload for the Link. 1973

Assuming that the Octopus Engine processing this Link already had Ks-share[F] and Kpriv-1974
share[F] in its internal Scuba key chain, after processing the Link L[F->T] it will also have Ks-1975
share[T] and Kpriv-share[T] on the key chain. 1976

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 83 of 91

 1977

 1978

6.6 Data Structures 1979

6.6.1 ScubaKeys 1980
 1981
class ScubaKeys {
 PairedKey [] publicKeys;
 PairedKey [] privateKeys;
 Key[] secretKeys;
}

class ScubaKeysExtension extends ExtensionData(type=’ScubaKeys’) {
 ScubaKeys scubaKeys;
}

Scuba Key Chain

Link A-B

Node A

Kpriv[
A]
Ks[A]

Kpub[A
]

Node B

Kpriv[B
]
Ks[B]

Kpub[B
]

Node C

Kpriv[C
]
Ks[C]

Kpub[C
]

Kpriv[B
]
Ks[B]

Link B-C

Kpriv[C
]
Ks[C]

= Kept secret by entity

Encrypted with
Ks[A] or
Kpub[A]

Encrypted with
Ks[B] or
Kpub[B]

Obtained from
Personality Node A

Kpriv[
A]
Ks[A]

Obtained by Processing
Link A-B

Kpriv[B
]
Ks[B]

Obtained by Processing
Link B-C

Kpriv[C
]
Ks[C]

D D

D = Decrypt with Private or Symmetric Key

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 84 of 91

The Key and PairedKey data structures are defined in §2.4.5, and the ExtensionData data 1982
structure is defined in §2.4.1.2. 1983

6.7 Signatures and Flags 1984

ScubaKeys can appear in different contexts: 1985

• Nodes: ScubaKeys is carried in an internal extension that MUST be signed as a part of 1986
the Node object. In this internal extension, the ScubaKeys MUST only contain the 1987
Node’s public keys. The ‘critical’ flag of that extension SHOULD be set to ‘false’. 1988

• Links: ScubaKeys is carried in an internal extension and contains the private and/or 1989
symmetric sharing keys of the “to” Node. In this context, the ScubaKeys extension 1990
MUST NOT be signed. The ‘critical’ flag of that extension SHOULD be set to ‘false’. 1991

 1992

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 85 of 91

7 SeaShell Object Store 1993

7.1 Introduction 1994

This section of the document contains the SeaShell specification. SeaShell is a secure Object 1995
Store that can be used by Octopus Engine implementations to provide a secure state storage 1996
mechanism. Such a facility is useful to enable control programs to be able to read and write in a 1997
protected state database that is persistent from invocation to invocation. Such a state database 1998
can be used to store state objects such as play-counts, date of first use, accumulated rendering 1999
times, etc. 2000

7.2 Database Objects 2001

A SeaShell database contains objects. Objects are arranged in a logical hierarchy, where 2002
container objects are parents of their contained children objects. There are four types of objects. 2003
Each object has associated metadata and a type. Depending on its type, an object can also have a 2004
value. 2005

SeaShell objects can be accessed from Plankton programs using the System.Host.GetObject and 2006
System.Host.SetObject system calls. The object metadata is accessed using Virtual Names. (See 2007
§7.4 for more details on object access.) Some of the metadata fields can be changed by clients of 2008
the SeaShell database, but some metadata fields are read-only (RO). 2009

7.2.1 Object Metadata 2010
 2011

Field Type Accessibility Description

Name String RO Name of the object. Only the following
characters are allowed as object names
(all others are reserved):

a-z, A-Z, 0-9, ‘_’, ‘-‘, ‘+’, ‘:’, ‘.’, ‘$’, ‘!’,
‘*’, ‘ ‘

Owner String RW ID of the owner of the object.

CreationDate Unsigned
32-bit
integer

RO Date at which the object was created,
expressed as the number of minutes
elapsed since Jan 1 1970 00:00:00 UTC.

ModificationDate Unsigned
32-bit
integer

RO Date at which the object was last
modified, expressed as the number of
minutes elapsed since Jan 1 1970
00:00:00 UTC.

For container objects, this is the date at
which a child was last added to or
removed from the container. For other
objects, this is the date at which their
value was last changed.

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 86 of 91

ExpirationDate Unsigned
32-bit
integer

RW Date at which the object expires,
expressed as the number of minutes
elapsed since Jan 1 1970 00:00:00 UTC.

If the value is 0, it means that the object
does not expire.

Flags 32-bit bit
field

RW Set of Boolean flags indicating Boolean
properties of the object.

7.2.1.1 Flags 2012

The following metadata flags are defined 2013
 2014
Bit index Name Meaning

0 (LSB) PUBLIC_READ If set, indicates that the access control for this object is such
that any client can read the object and its metadata, regardless
of its identity.

7.2.2 Object Types 2015

7.2.2.1 String 2016

The value of a String object is a UTF-8 encoded character string. 2017

7.2.2.2 Integer 2018

The value of an Integer object is a 32-bit integer value. 2019

7.2.2.3 Byte Array 2020

The value of a Byte Array object is an array of bytes. 2021

7.2.2.4 Container 2022

A container object contains zero or more objects. 2023

A container object is referred to as the parent of the objects it contains. The contained objects are 2024
referred to as the children of the container. All the container objects that make up the chain of an 2025
object’s parent, the parent’s parent, and so on, are called the object’s ancestors. If an object has 2026
another object as it ancestor, that object is called a descendant of the ancestor object. 2027

7.3 Object Lifetime 2028

The lifetimes of objects in a SeaShell database follow a number of rules. Objects can be 2029
explicitly destroyed, or implicitly destroyed. Objects can also be destroyed as the result of a 2030
database garbage collection. 2031

Regardless of how an object is destroyed, the following rules MUST apply: 2032

• The ModificationDate for the parent container of that object is set to the current time. 2033

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 87 of 91

• If the object is a container, all its children are destroyed. 2034

7.3.1 Explicit Object Destruction 2035

Explicit object destruction happens when a client of the database requests that an object be 2036
removed (see §7.4 for more details on how this can be done using the Host.SetObject Plankton 2037
system call). 2038

7.3.2 Implicit Object Destruction 2039

Implicit object destruction happens when an object is destroyed as the result one of the objects in 2040
its ancestry being destroyed. 2041

7.3.3 Garbage Collection 2042

A SeaShell object database destroys any object that has expired. An object is considered to have 2043
expired when the time is later than the ExpirationDate field of the object’s metadata. An 2044
implementation MAY periodically scan the database for expired objects and destroy them, or it 2045
MAY wait until an object is accessed to check its expiration date. An implementation MUST 2046
NOT return to a client an expired object. 2047

When a container object is destroyed because it has expired, its children objects are also 2048
destroyed (and all their descendants, recursively) even if they have not expired yet. 2049

7.4 Object Access 2050

The objects in a SeaShell database can be accessed from Plankton programs through a pair of 2051
system calls: System.Host.GetObject to read the value of an object, and System.Host.SetObject 2052
to create, destroy or set the value of an object. 2053

To be visible as a tree of host objects, a SeaShell database needs to be “mounted” under a certain 2054
name in the host object tree. This way, a database is visible as a sub-tree in the more general tree 2055
of host objects. To achieve this, all SeaShell databases contain a top-level built-in root container 2056
object that always exists. This root container is essentially the name of the database. All other 2057
objects in the database will be descendants of the root container. Multiple SeaShell databases can 2058
be mounted at different places in the host object tree. (For two databases to be mounted under the 2059
same host container, they need to have different names for their root containers.) For example, if 2060
a SeaShell database, whose root container is named ‘Database1’, contains a single Integer child 2061
object named ’Child1’, the database could be mounted under the host object container 2062
“/SeaShell”, in which case the ‘Child1’ object would be visible as ‘/SeaShell/Database1/Child1’. 2063

All accesses to objects are governed by an access policy. See §7.5 on access control for more 2064
details. 2065

7.4.1 Reading Objects 2066

The value of an object can be read by using the system call System.Host.GetObject (§4.7.2.7). 2067
The four object types (Integer, String, Byte Array and Container) that can exist in the database 2068
map directly onto their counterparts in the Plankton Virtual Marchine specification (§4.7.2.7). 2069
The object values are accessed in the normal way, and the standard virtual names must be 2070
implemented. (Virtual names are described in the Plankton specification in §4.7.2.7.2.) 2071

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 88 of 91

7.4.2 Creating Objects 2072

Objects can be created by calling System.Host.SetObject (§4.7.2.8) for an object name that does 2073
not already exist. The object creation is done according to the system call specification. When an 2074
object is created, the SeaShell database 2075

• sets the Owner field of the object metadata to the value of the Owner field of the parent 2076
container object’s metadata; 2077

• sets the CreationDate field of the metadata to the current time; 2078

• sets the ModificationDate field of the metadata to the current time; 2079

• sets the ExpirationDate field of the metadata to 0 (does not expire); 2080

• sets the Flags field of the metadata to 0; 2081

• sets the ModificationDate of the parent container to the current time. 2082

As specified in the System.Host.SetObject system call specification, when creating an object 2083
under a path deeper than the existing container hierarchy, the SeaShell database will need to 2084
implicitly create the container objects that need to exist to create a path to the object being 2085
created. Implicit container object creation follows the same rules as an explicit creation. 2086

For example, if there is a container “A” with no children, a request to set “A/B/C/SomeObject” 2087
will implicitly create containers “A/B” and “A/B/C” before creating “A/B/C/SomeObject”. 2088

7.4.3 Writing Objects 2089

The value of objects can be changed by calling System.Host.SetObject for an object that already 2090
exists. If the specified ObjectType does not match the type ID of the existing object, 2091
ERROR_INVALID_PARAMETER is returned. If the type ID is 2092
OBJECT_TYPE_CONTAINER, no value needs to be specified (the ObjectAddress MUST be 2093
non-zero, but its value will be ignored). 2094

When an existing object is set, the SeaShell database sets the ModificationDate of the object to 2095
the current time. 2096

7.4.4 Destroying Objects 2097

Objects can be explicitly destroyed by calling System.Host.SetObject for an object that already 2098
exists, with an ObjectAddress value of 0. (See the Plankton specification for the system call in 2099
§4.7.2.8.) 2100

When an object is destroyed, the SeaShell database 2101

• sets the ModificationDate of the parent container to the current time; 2102

• destroys all its child objects if the destroyed object is a container. 2103

7.4.5 Object Metadata 2104

The metadata for SeaShell objects is accessed by using the System.Host.GetObject and 2105
System.Host.SetObject system calls with virtual names. 2106

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 89 of 91

This table lists the standard and extended virtual names that are available for objects in a 2107
SeaShell database and how they map to the metadata fields, which are documented in §7.2.1. 2108
 2109

Virtual Name Type Description

@Name String The Name field of the object metada

@Owner String The Owner field of the object metadata

@CreationDate 32-bit
unsigned
integer

The CreationDate field of the object metadata

@ModificationDate 32-bit
unsigned
integer

The ModificationDate field of the object metadata

@ExpirationDate 32-bit
unsigned
integer

The ExpirationDate field of the object metadata

@Flags 32-bit bit
field

The Flags field of the object metadata

Metadata fields that are read-only (see the Metadata field description in §7.2) cannot be written 2110
to. 2111

An implementation MUST refuse a request to set the Flags metadata field if one or more 2112
undefined flags (flags not defined in this specification) are set to 1. In this case, the return value 2113
for the System.Host.SetObject is ERROR_INVALID_PARAMETER. When reading the Flags 2114
metadata field, a client MUST ignore any flag not defined in this specification. When setting the 2115
Flags field of an object, a client MUST first read its existing value and preserve the value of any 2116
flag not defined in this specification. 2117

7.5 Object Ownership and Access Control 2118

Whenever a request to read, write, create, or destroy an object is made, the SeaShell database 2119
implementation first checks whether the caller has the permission to perform the request. The 2120
policy that governs access to objects is based on the concepts of principal identities and 2121
delegation. In order for the policy to be implemented, it is necessary that the trust model under 2122
which the implementation operates supports the notion of authenticated control programs. This is 2123
typically done by having the Plankton code module that contains the program be digitally signed 2124
(directly or indirectly through a secure reference) with the private key of a PKI key pair, and 2125
having a name certificate that associates a principal name with the signing key; however, 2126
different ways of determining control program identities are possible. 2127

 The access policy for the objects in a SeaShell database is comprised of a few simple rules: 2128

• Read access to an object’s value is granted if the caller’s identity is the same as the 2129
owner of the object or if the PUBLIC_READ flag is set in the object’s Flags metadata 2130
field. 2131

• Read access to an object’s value is granted if the caller has Read access to the object’s 2132
parent container. 2133

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 90 of 91

• Write access to an object’s value is granted if the caller’s identity is the same as the 2134
owner of the object. 2135

• Write access to an object’s value is granted if the caller has Write access to the object’s 2136
parent container. 2137

• Create or Destroy access to an object is granted if the caller has Write access to the 2138
parent container of the object 2139

• Read and Write access to an object’s metadata (using virtual names) follows the same 2140
policy as Read and Write access to the object’s value, with the additional restriction that 2141
read-only fields cannot be written to. 2142

When the access policy denies a client’s request, the return value of the system call for the 2143
request is ERROR_PERMISSION_DENIED. 2144

The root container of a SeaShell database is fixed when the database is created, but the 2145
mechanism by which the database is created is not specified in this document. 2146

When an object is created, the value of its Owner metadata field is set to the same value as that 2147
of its parent container Owner metadata field. Ownership of an object can change. To change the 2148
ownership of an object, the value of the Owner metadata field can be set by calling the 2149
Sytem.Host.SetObject system call for the ‘@Owner’ virtual name of that object, provided that it 2150
is permitted under the access control rules. 2151

Since it is impossible for a control program to access objects that are not owned by the same 2152
principal as the one whose identity it is running under, a control program needs to delegate 2153
access to ‘foreign’ objects to programs loaded from code modules that have the ability to run 2154
under the identity of the owner of the ‘foreign’ object. To do this, a control program MAY use 2155
the System.Host.SpawnVm, System.Host.CallVm and System.Host.ReleaseVm system calls. 2156
(See §4.7.2 in the Plankton specification for more details.) 2157

Copyright © Marlin Developer Community, 2003-2010. A ll Rights Reserved.
Refer to Notices on page 2 for important legal information.

Page 91 of 91

8 References 2158

 2159
[RFC2046] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.

N. Freed, Nathaniel Borenstein. November 1996.
http://www.ietf.org/rfc/rfc2046.txt

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
IETF RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC3066] H. Alvestrand. Tags for the Identification of Languages.
http://www.ietf.org/rfc/rfc3066.txt.

 2160

http://www.ietf.org/rfc/rfc2046.txt�
http://www.ietf.org/rfc/rfc2119.txt�

	Version 1.0.3
	Final
	Table of Contents
	Introduction
	Definitions, Acronyms and Abbreviations
	Conformance Conventions

	Octopus Objects
	Introduction
	Content Protection and Governance Objects
	Common Elements
	IDs
	Attributes
	Extensions
	Internal Extensions
	External Extensions

	Content
	ContentKey
	Protector
	Control
	Controller
	Symmetric Key Signature
	Public Key Signature

	Rule Conditions, Identity and Key Management Objects
	Node
	Link

	Data Structures
	Common Structures
	Attributes
	Extensions

	Node Objects
	Link Objects
	Control Objects
	ContentKey Objects
	Controller Objects
	Protector Objects

	Octopus Controls
	Introduction
	Control Programs
	Naming Conventions
	Interface to Control Programs
	Control Loading
	Atomicity

	Control Protocol
	Byte Code Type
	General Control Routines
	Control.Init
	Control.Describe
	Control.Release

	Action Routines
	Control.Actions.<Action>.Init
	Control.Actions.<Action>.Check
	Control.Actions.<Action>.Perform
	Control.Actions.<Action>.Describe
	Control.Actions.<Action>.Release

	Link Constraint Routines
	Control.Link.Constraint.Init
	Control.Link.Constraint.Check
	Control.Link.Constraint.Describe
	Control.Link.Constraint.Release

	Agent Routines
	Control.Agents.<Agent>.Init
	Control.Agents.<Agent>.Run
	Control.Agents.<Agent>.Describe
	Control.Agents.<Agent>.Release

	Extended Status Blocks
	Global Flags
	Categories
	Check and Perform Routines for Actions
	Describe Routines
	Link Constraint Routines

	Cache Durations
	Parameters
	Description
	Constraints
	Generic Constraints
	Temporal Constraints
	Spatial Constraints
	Group Constraints
	Device Constraints
	Counter Constraints

	Parameter Flags

	Obligations and Callbacks
	Parameters
	Obligations
	Callbacks
	Parameter Flags

	Events
	Callback Routines
	CONTINUE Callbacks
	RESET Callbacks

	Metadata Resources
	Simple Text
	Text Templates
	Formatting
	Default Formatting
	Explicit Formatting

	Context Objects
	General Context
	Runtime Context
	Control Context
	Controller Context
	Action Context
	Link Context
	Agent Context

	Actions
	Play
	Transfer
	Export
	Standard Target Systems
	Audio CD or DVD

	Plankton Virtual Machine
	Introduction
	Design Rationale
	Architecture
	Basic VM Elements
	Execution Model
	Memory Model
	Data Stack
	Call Stack
	Pseudo-registers
	Memory Map
	Data Memory
	Code Memory

	Executing Routines
	Runtime Exceptions

	Instruction Set
	Code Modules
	Module Format
	pkCM Atom
	pkDS Atom
	pkCS Atom
	pkEX Atom
	pkRQ Atom
	Module Loader

	System Calls
	System Call Numbers Allocation
	Standard System Calls
	System.NoOperation
	System.DebugPrint
	System.FindSystemCallByName
	System.Host.GetLocalTime
	System.Host.GetLocalTimeOffset
	System.Host.GetTrustedTime
	System.Host.GetObject
	Object Types
	Byte Arrays
	Strings
	Integers
	Containers

	Object Names
	Virtual Names and Virtual Objects
	Examples

	System.Host.SetObject
	Creating a Container
	Destroying an Object

	Octopus.Links.IsNodeReachable
	System.Host.SpawnVm
	System.Host.CallVm
	System.Host.ReleaseVm

	Standard Data Structures
	Standard Parameters
	Parameter Block
	Extended Parameter Block
	Name Block
	Value Block
	Value List Block

	Standard Extended Status Block

	Standard Result Codes

	Octopus Object Serialization
	Introduction
	Canonical Byte Sequence Algorithm
	Simple Types
	Compound Types
	Encoding Rules

	Application to Octopus Objects
	Attributes
	Extensions
	Controller
	ScubaKeys

	Example

	Scuba Key Distribution
	Introduction
	Nodes, Entities and Scuba Keys
	Entities
	Nodes
	Sharing Keys
	Confidentiality Keys

	Cryptographic Elements
	Binding of Content Keys
	Derivation of Scuba Keys using Links
	Data Structures
	ScubaKeys

	Signatures and Flags

	SeaShell Object Store
	Introduction
	Database Objects
	Object Metadata
	Flags

	Object Types
	String
	Integer
	Byte Array
	Container

	Object Lifetime
	Explicit Object Destruction
	Implicit Object Destruction
	Garbage Collection

	Object Access
	Reading Objects
	Creating Objects
	Writing Objects
	Destroying Objects
	Object Metadata

	Object Ownership and Access Control

	References

