

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 1 of 154

 1
 2
 3
 4
 5
 6
 7
 8
 9

Marlin – Core System Specification 10
Version 1.3.6 11
Final 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
Source Marlin Developer Community
Date March 13, 2013
 24

25

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 2 of 154

Notice 26

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO REPRESENTATION OR 27
WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE COMPLETENESS, 28
ACCURACY, OR APPLICABILITY OF ANY INFORMATION CONTAINED IN 29
THIS DOCUMENT. THE MARLIN DEVELOPER COMMUNITY (“MDC”) ON 30
BEHALF OF ITSELF AND ITS PARTICIPANTS (COLLECTIVELY, THE 31
"PARTIES") DISCLAIM ALL LIABILITY OF ANY KIND WHATSOEVER, 32
EXPRESS OR IMPLIED, ARISING OR RESULTING FROM THE RELIANCE OR 33
USE BY ANY PARTY OF THIS DOCUMENT OR ANY INFORMATION 34
CONTAINED HEREIN. THE PARTIES COLLECTIVELY AND INDIVIDUALLY 35
MAKE NO REPRESENTATIONS CONCERNING THE APPLICABILITY OF ANY 36
PATENT, COPYRIGHT (OTHER THAN THE COPYRIGHT TO THE 37
DOCUMENT DESCRIBED BELOW) OR OTHER PROPRIETARY RIGHT OF 38
THIS DOCUMENT OR ITS USE, AND THE RECEIPT OR ANY USE OF THIS 39
DOCUMENT OR ITS CONTENTS DOES NOT IN ANY WAY CREATE BY 40
IMPLICATION, ESTOPPEL OR OTHERWISE, ANY LICENSE OR RIGHT TO 41
OR UNDER ANY PATENT, COPYRIGHT, TRADEMARK OR TRADE SECRET 42
RIGHTS WHICH ARE OR MAY BE ASSOCIATED WITH THE IDEAS, 43
TECHNIQUES, CONCEPTS OR EXPRESSIONS CONTAINED HEREIN. 44

Use of this document is subject to the agreement executed between you and the 45
Parties, if any. 46

Any copyright notices shall not be removed, varied, or denigrated in any manner. 47

Copyright © 2003 - 2013 by MDC, 415-112 North Mary Avenue #383 Sunnyvale, CA 48
94085, USA. All rights reserved. Third-party brands and names are the property of their 49
respective owners. 50

Intellectual Property 51

A commercial implementation of this specification requires a license from the Marlin 52
Trust Management Organization. 53

Contact Information 54

Feedback on this specification should be addressed to: 55
editor@marlin-community.com 56

Contact information for the Marlin Trust Management Organization can be found 57
at: http://www.marlin-trust.com/58

mailto:editor@marlin-community.com�
http://www.marlin-trust.com/�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 3 of 154

 59
Contents 60
1 Introduction ... 6 61

1.1 Document Organization .. 6 62
1.2 Conformance Conventions ... 6 63
1.3 Namespaces and Identifiers ... 6 64

1.3.1 Namespaces and Notation .. 7 65
1.3.2 Names and Identifiers .. 8 66
1.3.3 Marlin Naming .. 9 67

1.4 Abbreviations .. 10 68
1.5 Terms and Definitions ... 11 69
1.6 References ... 12 70

1.6.1 Normative References ... 12 71
1.6.2 Informative References .. 16 72

2 Marlin Core System Overview (Informative) ... 18 73
2.1 Scope of the Marlin Core System Specifications ... 20 74
2.2 Marlin Core System Entities ... 20 75
2.3 Marlin Domains ... 23 76
2.4 Content Binding and Movement under Marlin Governance ... 24 77

3 Marlin DRM Objects .. 26 78
3.1 Octopus Objects ... 26 79

3.1.1 Node and Link Objects... 26 80
3.1.2 License Objects ... 26 81
3.1.3 Lookup Scope for Spawned Controls .. 26 82
3.1.4 Agent Conveyance for License Transfer ... 27 83

3.2 Octopus Object Attributes and Extensions ... 27 84
3.2.1 Octopus Nodes .. 27 85
3.2.2 Octopus Links .. 30 86
3.2.3 License objects .. 30 87
3.2.4 License Object Contexts .. 31 88

3.3 XML Encoding of Octopus Objects .. 31 89
3.3.1 Overview .. 31 90
3.3.2 General Schema Design .. 31 91
3.3.3 Additional Constraints on the Schema ... 32 92
3.3.4 Signatures: Use of XML Digital Signature [xmldsig] .. 37 93

4 Marlin Core System Roles and Services .. 39 94
4.1 Overview ... 39 95
4.2 Roles Definitions ... 40 96

4.2.1 Device .. 40 97
4.2.2 Domain Information Provider ... 40 98
4.2.3 Security Data Provider ... 40 99
4.2.4 DRM Object Provider ... 40 100
4.2.5 DRM Client ... 41 101

5 Marlin Core System Protocols .. 42 102
5.1 NEMO Architecture for Marlin ... 42 103

5.1.1 Concepts and Architecture .. 42 104
5.2 Message Security Policies .. 43 105

5.2.1 Overview .. 43 106
5.2.2 Protocol Security Policy Identifiers .. 44 107
5.2.3 Request Policies .. 45 108
5.2.4 Response Policies ... 49 109

5.3 Message Faults .. 52 110
5.3.1 Faults for SOAP Header Processing ... 52 111
5.3.2 Faults for SOAP Body Processing ... 53 112

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 4 of 154

5.3.3 Fault Addressing .. 54 113
5.4 Discovery .. 55 114

5.4.1 Overview .. 55 115
5.4.2 Description Extension .. 55 116

5.5 Inspection ... 57 117
5.5.1 Overview .. 57 118
5.5.2 Inspection Client and Service interaction... 57 119

5.6 Subscription and Notification .. 61 120
5.6.1 Overview .. 61 121
5.6.2 Topics... 63 122
5.6.3 Notification Consumer.. 65 123
5.6.4 Notification Producer.. 66 124
5.6.5 Subscription Manager Operations ... 66 125
5.6.6 Faults ... 67 126

5.7 Service-specific Protocols .. 67 127
5.7.1 Proximity Check Protocol (HARPOON) ... 67 128
5.7.2 DRM Client Information.. 69 129
5.7.3 Provide Domain Information .. 72 130
5.7.4 Provide DRM Objects .. 72 131
5.7.5 Provide Security Data .. 74 132
5.7.6 License Transfer .. 75 133

6 Marlin Protocol Bindings ... 79 134
6.1 HTTP/OBEX Binding .. 79 135

6.1.1 Connection Establishment ... 80 136
6.1.2 Connection Termination ... 80 137
6.1.3 Message Exchange ... 81 138
6.1.4 Aborting a Message Exchange .. 81 139
6.1.5 Mapping HTTP Messages to OBEX .. 81 140

6.2 SOAP 1.1/HTTP 1.1 Binding (Informative) ... 84 141
6.2.1 HTTP Headers ... 84 142

6.3 NEMO Message Binding .. 85 143
7 Marlin Key Management ... 87 144

7.1 Introduction (Informative) .. 87 145
7.2 HBES Broadcast Key Block Validity ... 87 146
7.3 Content Key Object before Exclusion ... 87 147
7.4 Content Key Object after Exclusion .. 88 148

8 Renewability .. 92 149
8.1 Overview ... 92 150
8.2 Specification Version Attributes .. 92 151

9 Marlin Trust Management ... 94 152
9.1 Certificates .. 94 153

Certificate Contents .. 94 154
9.1.2 Excluded Certificate Extensions .. 95 155
9.1.3 Certificate Extensions .. 96 156
9.1.4 Certificate Validation .. 98 157

9.2 Certificate Revocation List .. 101 158
CRL Contents ... 101 159

9.3 Trust Management of Marlin Services (Informative) .. 103 160
9.3.1 Secure Peer Interactions ... 103 161
9.3.2 DRM Services .. 103 162
9.3.3 Data Certification Services .. 104 163

9.4 Trust Hierarchies and Policies .. 105 164
9.4.1 Peer Application Interaction Trust Hierarchy ... 106 165
9.4.2 DRM Services Trust Hierarchy .. 108 166
9.4.3 DRM Client Personalization Trust Hierarchy ... 109 167

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 5 of 154

9.4.4 Registration Services Trust Hierarchy ... 113 168
9.4.5 Content Licensing Trust Hierarchy .. 116 169
9.4.6 Data Certification Trust Hierarchy .. 119 170

10 File Format for Marlin Content .. 123 171
11 Marlin Usage Rules ... 124 172

11.1 Move and Copy Actions ... 125 173
11.1.1 Theory of Operation (Informative) ... 125 174

12 Profiles .. 128 175
12.1 Cryptographic Algorithm Profiles .. 128 176

12.1.1 Hashing (Digest) algorithms: ... 128 177
12.1.2 Keyed-Hash Message Authentication Code algorithms 128 178
12.1.3 Public Key algorithms .. 128 179
12.1.4 Signature Hash algorithms .. 128 180
12.1.5 Symmetric key algorithms ... 128 181
12.1.6 Canonicalization .. 129 182

12.2 XML Digital Signature Profile ... 129 183
12.2.1 <ds:Signature> Element .. 129 184
12.2.2 <ds:SignedInfo> .. 129 185
12.2.3 <ds:SignatureValue> ... 131 186
12.2.4 <ds:KeyInfo> ... 131 187

12.3 NEMO Profile for Basic Secure Messaging ... 132 188
12.3.1 Notation ... 132 189
12.3.2 Request Message .. 132 190
12.3.3 Response Message ... 135 191
12.3.4 Confirmation Message ... 137 192
12.3.5 License Transfer Protocol Correlation Processing Rules 140 193

12.4 SAML Assertion Profile .. 140 194
12.4.1 Assertion Conditions .. 141 195
12.4.2 Assertion Subject ... 141 196
12.4.3 Attributes.. 141 197
12.4.4 Subject Confirmation ... 141 198
12.4.5 Signature ... 142 199

12.5 Name Management Profile .. 142 200
12.5.1 SeaShell Object Ownership... 142 201
12.5.2 Octopus Naming .. 143 202
12.5.3 Extensions ... 143 203
12.5.4 SeaShell Database ([8pus] §7) ... 144 204

12.6 Type Mapping of Host Objects ... 147 205
12.6.1 Mapping XML Types to Host Objects .. 147 206
12.6.2 Mapping Octopus Object Attributes to Host Objects ... 147 207
12.6.3 Mapping Agent Parameters to Host Objects ... 148 208

12.7 XML Profile ... 150 209
12.7.1 XML Attribute Composition Constraints .. 150 210
12.7.2 Using QNames .. 151 211

12.8 Security Metadata Propagation (Informative) .. 151 212
12.8.1 Common Security Metadata Acquisition Mechanisms 152 213
12.8.2 Alternate Security Metadata Acquisition Mechanisms 152 214

 215

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 6 of 154

1 Introduction 216

1.1 Document Organization 217
This document covers the complete Marlin Core Specifications. It is organized as 218
follows: 219

• (this) introduction, including abbreviations, definitions and references 220
• An overview of the Marlin core system architecture 221
• Sections for each of the normative specification elements. These are: 222

o DRM Objects 223
o DRM Roles and Services 224
o Client-Service Role Protocols 225
o Protocol Bindings 226
o Key Management 227
o Renewability 228
o Trust Management 229
o Content File Formats (see [MFF1.0]) 230
o Usage Rules 231
o Naming Conventions (e.g. names that must be used uniformly across 232

implementation to achieve the interoperability goals of marlin 233
• A set of attachments: 234

o WSDLS and XML Schemas 235

1.2 Conformance Conventions 236
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 237
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this 238
specification are to be interpreted as described in IETF RFC 2119 [RFC2119]. 239
 240
These capitalized key words are used to unambiguously specify requirements and 241
behavior that affect the interoperability and security of implementations. When these key 242
words are not capitalized they are meant in their natural-language sense. 243
 244
All Elements of this specification are considered Normative unless specifically marked 245
Informative. All Normative Elements are Mandatory to implement, except where such an 246
element is specifically marked OPTIONAL. Finally, where Normative elements are 247
described as OPTIONAL, they MAY be omitted from an implementation, but when 248
implemented, they MUST be implemented as described. 249

1.3 Namespaces and Identifiers 250
This specification defines schemas conforming to XML Schemas [Schema] and 251
normative text to describe the syntax and semantics of XML-encoded objects and 252
protocol messages. In cases of disagreement between the schema documents and the 253
schema listings in this specification the schema documents take precedence. Note that 254
is some cases the normative text of this specification imposes constraints beyond those 255
indicated by the schema documents. 256

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 7 of 154

1.3.1 Namespaces and Notation 257
The following table summarizes the normative schemas defined by this specification and 258
their XML namespace [XMLns] URIs. These URIs MUST be used by implementations of 259
this specification: 260
 261
Prefix XML Namespace Schema File

Name
Description

mc: urn:marlin:core:1-3:schemas marline-core.xsd Marlin core
schema

ml: http://marlin-drm.com/1.0 Marlin.xsd Marlin DRM
schema

mncs: urn:marlin:core:1-
1:nemo:services:schemas

marlin-nemo-core-
services.xsd

Marlin NEMO
Services

exc: urn:marlin:core:1-
2:nemo:services:schemas:exceptions

marlin-nemo-core-
exceptions.xsd

Fault
Response
schema

Table 1-1 Namespace Definitions 262

In addition to the schemas defined by this specification, we leverage existing schemas to 263
achieve our design goals. The following table summarizes the external schemas used in 264
this specification: 265
 266
Prefix XML Namespace Description
oct: http://www.octopus-drm.com/profiles/base/1.0 Octopus
pk: http://www.octopus-

drm.com/profiles/base/1.0/plankton
[8pus] §4

sf: http://marlin-drm.com/starfish/1.2 [Starfish]
nemoc: http://nemo.intertrust.com/2005/10/core [NEMO] §2
nemosec: http://nemo.intertrust.com/2005/10/security [NEMO] §3
xs: http://www.w3.org/2001/XMLSchema [Schema]
xsi: http://www.w3.org/2001/XMLSchema-instance [Schema]
ds: http://www.w3.org/2000/09/xmldsig# [xmldsig]
xenc: http://www.w3.org/2001/04/xmlenc# [xmlenc]
wsdl: http://schemas.xmlsoap.org/wsdl/ [WSDL]
wsa: http://www.w3.org/2005/08/addressing [WS-Addr]
wsx: http://schemas.xmlsoap.org/ws/2004/09/mex [WS-MEX]
wsnt: http://docs.oasis-open.org/wsn/b-2 [WS-BASENOTE]
wsrf-rp: http://docs.oasis-open.org/wsrf/rp-1 [WSRF-RP]
wsrf-rl: http://docs.oasis-open.org/wsrf/rl-1 [WSRF-RL]
wsrf-bf: http://docs.oasis-open.org/wsrf/bf-2 [WSRF-BF]
S11: http://schemas.xmlsoap.org/soap/envelope [SOAP11]
wsu: http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd
[WS-SEC]

wsse: http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd

[WS-SEC]

wsp: http://schemas.xmlsoap.org/ws/2004/09/policy [WS-POL]
Table 1-2 Supporting Namespaces 267

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 8 of 154

As a convention throughout this document we use the namespace prefixes described 268
above to qualify XML elements and attributes which are specified elsewhere. That is the 269
typographical convention is: <MarlinElement>, <ns:ForeignElement>, XMLAttribute, 270
Datatype, OtherKeyword. 271

1.3.2 Names and Identifiers 272
This section complements naming patterns and names introduced in subsequent 273
sections of this specification. Additional naming conventions are described in Section 274
12.5. 275
 276
This specification uses Uniform Resource Identifiers [RFC2396] to identify various 277
entities including resources, algorithms, policies, attributes and other application specific 278
objects. Implementations of this specification MUST support URIs of at least 256 bytes 279
long. 280
 281
A standard naming pattern is specified to simplify management of the identifiers defined 282
across all systems that leverage the underlying technology (e.g., Nemo and Octopus), 283
as well as across all the implementations of Marlin. The naming pattern used allows 284
each layer/entity to delegate management of namespaces to subordinate layers/entities. 285
This approach guarantees uniqueness of names generated by those subordinate 286
layers/entities without active coordination between them. 287
 288
All Marlin names SHALL be specified as URIs and use a consistent root (prefix) based 289
on the syntax of the identifier. Two URIs and their respective prefixes are defined in the 290
table below: 291
 292
Identifier Type Prefix
URN urn:marlin:
URL http://marlin-drm.com
 293
The identifiers defined within the above declared namespaces are normative to this 294
specification. Per [URNMARLIN], URNs SHALL be treated in a case sensitive manner. 295
The namespace prefix SHALL be the lowercase string “urn:marlin:”. 296
 297
Note that this specification uses identifiers defined by other specifications and their 298
normative definition solely comes from the specification that defines them. As a 299
convenience to the reader these identifiers may appear in examples or in giving 300
guidance. However, such uses are informative and do not supercede the identifier 301
definition. 302
 303
Device manufacturers, service providers, and perhaps other organizations that 304
implement Marlin specifications may need to define Marlin related object names specific 305
to themselves or their extensions to the Marlin specifications. To keep organization 306
specific object names distinct without requiring active coordination between all such 307
entities, organization specific urns are used. Such organizations can register their own 308
unique URN namespace (e.g. urn:SomeOrganization) and define such names using a 309
URN registered to their organization. In order to not require all such organizations 310
register their own URN namespace, they can be registered with Marlin and issued a 311

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 9 of 154

unique URN namespace within the Marlin namespace. Thus there are two patterns for 312
organization specific identifiers. 313
 314
Identifier Type Prefix
URN urn:marlin:organization:<organization-name>
URN urn:<organizations-own-namespace>
 315
In addition to naming patterns, specific attributes names and values SHALL be defined 316
when these are global in scope (e.g. the value used for a device capability or the role of 317
a system entity.) In general attribute names are qualified by a namespace. In some 318
instances an attribute namespace is defined by a URL and for purposes of convenience 319
we define an URN equivalent to maintain consistency and simplify processing. The 320
following table gives the set of URLs and their URN equivalent. 321
 322
URL Attribute Namespace URN Equivalent
http://nemo.intertrust.com/2004/attribute urn:marlin:nemo:2004:attribute
Table 1-3 Attribute Namespace Equivalences 323

To minimize backward compatibility issues we adopt the policy of not putting version 324
information in the attribute namespace qualifiers. Going forward, we will accommodate 325
behavioral changes of an entity for which an attribute refers by defining a new attribute 326
name. 327

1.3.3 Marlin Naming 328
In the following sections we specify naming conventions which will aid implementations 329
and delivery system specifications in defining identifiers in a consistent and interoperable 330
manner. 331
The general syntax can be described using the following BNF grammer; 332
 333
 urn:marlin:<specid>:<objattrid>:<attribute specific data>
where;
 <specid> is a constant identifier for the particular specification
 <objattrid> is the object or attribute identifier for which the URN applies
 334
The <specid> identifier SHALL adopt the prefix identifiers in the following table. 335
 336
Specification Identifiers Description
core Prefix identifier defined by this

specification.
broadband Prefix identifier defined in the

Broadband Delivery System
specification.

broadcast Prefix identifier defined in the
Broadcast Delivery System
specification.

omav2gw Prefix identifier defined in the OMA
Gateway specification.

<other> Future identifiers
Table 1-4 Specification Identifiers 337

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 10 of 154

The value space of URN identifiers may also need to be standardized so that 338
independent implementations by the same organization do not collide. Therefore it is 339
recommended that URN values use the specification id prefix followed by the 340
organization identifier. 341
The general syntax can be described using the following BNF grammer; 342
 343
 urn:marlin:organization:<orgid>:*
where;
 <orgid> is the organization specific identifier. Note this identifier can

include sub-organization identifiers which are managed by the
organization itself.

 * any valid URN namespace specific string
Table 1-5 Organization Identifiers 344

1.4 Abbreviations 345
AES Advanced Encryption Standard
AES-CTR-128 AES Counter mode with 128-bit key
BF Broadcast Flag
BKB Broadcast Key Block
CAS Conditional Access System
CBC Cipher Block Chaining
CCI Copy Control Information
CPRM Content Protection for Recordable Media
CTR Counter
DCF DRM Content Format
DCS Data Certification Service
DLNA Digital Living Network Alliance
DUS Data Update Service
HBES Hierarchical Hash-Chain Broadcast Encryption Scheme
ISO International Organization for Standardization
MAC Message Authentication Code
MDCF Marlin DRM Content Format
MDD Marlin Device Domain
MG-R MagicGate Type-R
NEMO Networked Environment for Media Orchestration
OMA Open Mobile Alliance
PAT Program Association Table
PMT Program Map Table
PSI Program Specific Information
SAML Security Assertions Markup Language
SDP Security Data Provider
SI Service Information
SOAP Simple Object Access Protocol
SPTS Single Program Transport Stream
SSDP Simple Service Discovery Protocol
TCP Transmission Control Protocol
TS Transport Stream
TTS Timed Transport Stream

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 11 of 154

UPnP Universal Plug and Play
VCPS Video Content Protection System
WSDL Web Services Description Language
XML Extensible Markup Language
 347

1.5 Terms and Definitions 348
Usage information Information that indicates usage rules and governance

applied for protected content.
Protection
information

Protection-related information along with protected
content.

Marlin Device
Domain

Set of devices that have established a membership
relationship which is reflected by an Octopus link.

Renewability The process by which security related elements of Marlin
Core System implementations can be renewed if
necessary

Security Metadata Metadata necessary for managing the security and
trustworthiness of the Marlin System, such as Certificate
Revocation Lists

Roles A combination of client/service functions supported by
an implementation

Marlin DRM Client A Role with the necessary functionality to allow it to
render content

Domain Manager A Role with the necessary functionality to allow it to link
devices into domains

Marlin Import
Function

A Role with the necessary functionality to allow it to
generate licenses and package content

Marlin Device The most basic Role any implementation must support
Marlin User The representation of a user
Marlin Subscription
Node

The representation of the token that makes it possible to
bind many content licenses together

Marlin Delivery
System
Specifications

Specifications that define how Marlin Content and
Licenses are created and how such content is imported
into a Marlin User’s Device Domain

Marlin User The Octopus Node that represents the user who “owns”
the content

Marlin Content Media packaged into a Marlin File Format Container
Marlin Content
Format

The File Format and Media Codec Profile that Marlin
Content is contained in.

Marlin Domain
Information Provider

A Role with the necessary functionality to advertise
which domains DRM Client can register to and the DRM
Object Provider

Content is targeted
to a Node

License uses the Node in isHostReachable

Content is bound to
a Node

License uses that Node for SCUBA key management
purposes.

Content Key The symmetric key that encrypts the payload of the
content

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 12 of 154

Starfish The Marlin broadcast encryption scheme based on
HBES (Hierarchical Hash-Chain Broadcast Encryption
Scheme)

Harpoon A protocol used to measure the network proximity of 2
devices

 349

1.6 References 350

1.6.1 Normative References 351
 352
[8pus] Octopus DRM Technology Platform Specifications,

Version 1.0
[AES] NIST FIPS 197: Advanced Encryption Standard (AES).

November
2001. http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf

[AES-MODES] Recommendation of Block Cipher Modes of Operation.
NIST. NIST Special Publication 800-38A.
http://csrc.nist.gov/CryptoToolkit/modes/800-
38_Series_Publications/SP800-38A.pdf

[CPRM-DVD] Content Protection for Recordable Media Specification,
DVD Book, Revision 0.96,
http://www.4centity.com/data/tech/spec/cprm-dvd096.pdf

[CPRM-SD-AUDIO] Content Protection for Recordable Media Specification,
SD Memory Card Book, SD-Audio Part, Revision 0.96,
http://www.4centity.com/data/tech/spec/Cprm-sd-
audio096.pdf

[CPRM-SD-VIDEO] Content Protection for Recordable Media Specification,
SD Memory Card Book, SD-Video Part, Revision 0.93,
http://www.4centity.com/data/tech/spec/Cprm-sd-video-
part-093-1.pdf

[DTCP14] Digital Transmission Content Protection Specification
Revision 1.4 Informational Version

[hmacwithsha1] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
Hashing for Message Authentication. IETF RFC 2104.
February 1997. http://www.ietf.org/rfc/rfc2104.txt

[hmacwithsha256] D. Eastlake and T. Hansen. US Secure Hash Algorithms
(SHA and HMAC-SHA). IETF RFC 4634. July 2007.
http://www.ietf.org/rfc/rfc4634.txt

[ISMACryp] “ISMA Encryption and Authentication Specification”,
version 1.0, February 2004.

[MEXP] Marlin - Export Parameter Specification
[MFF1.0] Marlin – File Formats Specification version 1.0.

December 2005.
[MIME] N. Freed & N. Borenstein. Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet
Message Bodies. IETF RFC 2045. November
1996. http://www.ietf.org/rfc/rfc2045.txt

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf�
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf�
http://csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38A.pdf�
http://csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38A.pdf�
http://www.4centity.com/data/tech/spec/cprm-dvd096.pdf�
http://www.4centity.com/data/tech/spec/Cprm-sd-audio096.pdf�
http://www.4centity.com/data/tech/spec/Cprm-sd-audio096.pdf�
http://www.4centity.com/data/tech/spec/Cprm-sd-video-part-093-1.pdf�
http://www.4centity.com/data/tech/spec/Cprm-sd-video-part-093-1.pdf�
http://www.ietf.org/rfc/rfc2104.txt�
http://www.ietf.org/rfc/rfc2104.txt�
http://www.ietf.org/rfc/rfc2104.txt�
http://www.ietf.org/rfc/rfc4634.txt�
http://www.ietf.org/rfc/rfc2045.txt�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 13 of 154

[MOCS1.0] Marlin – Output Control Specification version 1.0. June
2007

[NEMO] NEMO Technology Platform Specifications, Version 1.1
[OBEX13] IrDA Object Exchange Protocol (IrOBEX), Version 1.3,

January 2003, http://www.IrDA.org/
[PKIX] R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509

Public Key Infrastructure Certificate and CRL Profile.
IETF RFC 3280. April 2002.
http://www.ietf.org/rfc/rfc3280.txt

[PKIXALGS] R. Housley, B. Kaliski, J. Schaad. Additional Algorithms
and Identifiers for RSA Cryptography for use in the
Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. IETF RFC
4055. June 2005.
http://www.ietf.org/rfc/rfc4055.txt.

[QNAMEIDS] Using Qualified Names (QNames) as Identifiers in XML
Content,
http://www.w3.org/2001/tag/doc/qnameids

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate
Requirement Levels, IETF RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt.

[RFC2396] T. Berners-Lee, R. Fielding, L. Masinter. Uniform
Resource Identifiers (URI): Generic Syntax. IETF RFC
2396. August 1998.
http://www.ietf.org/rfc/rfc2396.txt

[RFC2585] R. Housley, P. Hoffman. Internet X.509 Public Key
Infrastructure Operational Protocols: FTP and HTTP.
IETF RFC 2585. May
1999. http://www.ietf.org/rfc/rfc2585.txt

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, eds. Hypertext Transfer
Protocol – HTTP/1.1. IETF RFC 2616
http://www.ietf.org/rfc/rfc2616.txt

[RFC2630] Cryptographic Message Syntax. Network Working
Group. R. Housley, Request for Comments: 2630. June
1999.

[RFC3279]
http://www.ietf.org/rfc/rfc2630.txt
W. Polk, R. Housley, L. Bassham. Algorithms and
Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile.
IETF RFC 3279.
http://www.ietf.org/rfc/rfc3279.txt

[RFC4051] D. Eastlake 3rd. Additional XML Security Uniform
Resource Identifiers (URIs). IETF RFC4051. April 2005.
http://www.ietf.org/rfc/rfc4051.txt

[RSA-1_5] B. Kaliski, J. Staddon. PKCS #1: RSA Cryptography
Specifications Version 2.0. IETF RFC2437. October
1998.
http://www.ietf.org/rfc/rfc2437.txt

http://www.irda.org/�
http://www.ietf.org/rfc/rfc3280.txt�
http://www.ietf.org/rfc/rfc4055.txt�
http://www.ietf.org/rfc/rfc2119.txt�
http://www.ietf.org/rfc/rfc2396.txt�
http://www.ietf.org/rfc/rfc2585.txt�
http://www.ietf.org/rfc/rfc2616.txt�
http://www.ietf.org/rfc/rfc2630.txt�
http://www.ietf.org/rfc/rfc3279.txt�
http://www.ietf.org/rfc/rfc4051.txt�
http://www.ietf.org/rfc/rfc2437.txt�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 14 of 154

[SAML1.1] Eve Maler, Prateek Mishra and Rob Philpott, eds.,
Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML)
V1.1, http://www.oasis-
open.org/committees/download.php/3405/oasis-sstc-
saml-bindings-1.1.pdf

[Schema] XML Schema Part 1: Structures. W3C
Recommendation. D. Beech, M. Maloney, N.
Mendelsohn, H. Thompson. May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/

XML Schema Part 2: Datatypes W3C Recommendation.
P. Biron, A. Malhotra. May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/

[SHA1] FIPS PUB 180-1. Secure Hash Standard. U.S.
Department of Commerce/National Institute of Standards
and Technology.
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[SHA256] FIPS PUB 180-2. Secure Hash Standard. U.S.
Department of Commerce/National Institute of Standards
and Technology.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2.pdf

[SOAP11] "Simple Object Access Protocol (SOAP) 1.1," Box, Don,
Ehnebuske, David , Kakivaya, Gopal, Layman, Andrew,
Mendelsohn, Noah, Nielsen, Henrik Frystyk, Winer,
Dave, eds. World Wide Web Consortium W3C Note (08
May 2000). http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/

[Starfish] Starfish - Marlin Broadcast Encryption Scheme v1.2
[UPnPDevArch1.0]] UPnP Device Architecture v1.0

http://upnp.org/resources/documents/CleanUPnPDA101-
20031202s.pdf

[UPnPDevArch1.0.1] UPnP Device Architecture v1.0.1 Draft
http://www.upnp.org/resources/documents/CleanUPnPD
A101-20031202s.pdf

[UPnPBasicDev] Basic:1.0 Device Definition Version 1.0
http://upnp.org/standardizeddcps/documents/BasicDevic
e-1.0.pdf

[UPnPImplGuid] UPnP Vendors Implementation Guide
http://www.upnp.org/download/UPnP_Vendor_Implemen
tation_Guide_Jan2001.htm

[URL] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform
Resource Locators (URL). IETF RFC 1738. December
1994.
http://www.ietf.org/rfc/rfc1738.txt

http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf�
http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf�
http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf�
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/�
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/�
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/�
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/�
http://www.itl.nist.gov/fipspubs/fip180-1.htm�
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf�
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf�
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/�
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/�
http://upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf�
http://upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf�
http://www.upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf�
http://www.upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf�
http://upnp.org/standardizeddcps/documents/BasicDevice-1.0.pdf�
http://upnp.org/standardizeddcps/documents/BasicDevice-1.0.pdf�
http://www.upnp.org/download/UPnP_Vendor_Implementation_Guide_Jan2001.htm�
http://www.upnp.org/download/UPnP_Vendor_Implementation_Guide_Jan2001.htm�
http://www.ietf.org/rfc/rfc1738.txt�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 15 of 154

[URN] R. Moats.. URN Syntax. IETF RFC 2141. May 1997.
http://www.ietf.org/rfc/rfc2141.txt
L. Daigle, D. van Gulik, R. Iannella, P. Falstrom.. URN
Namespace Definition Mechanisms. IETF RFC 2611.
June 1999.
http://www.ietf.org/rfc/rfc2611.txt

[URNMARLIN] A Uniform Resource Name (URN) Namespace for the
Marlin Development Community L.L.C. IETF Draft 02,
June 27, 2007

[VCPS] Video Content Protection System for the DVD+R/+RW,
Video Recording Format System Description, Version
1.2, February 2005
http://www.licensing.philips.com/vcps/

[WS-Addr] Web Services Addressing 1.0 - Core, W3C Candidate
Recommendation, 17 August 2005,
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817

Web Services Addressing 1.0 - SOAP Binding, W3C
Candidate Recommendation, 17 August 2005,
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817

[WS-BASENOTE] Web Services Base Notification 1.3, Committee
Specification,

[WSRF-BF]

http://docs.oasis-open.org/wsn/wsn-
ws_base_notification-1.3-spec-cs-01.pdf
Web Services Base Faults 1.2, OASIS Standard.

[WSDL]

http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-
spec-os.pdf
Web Services Description Language

[WS-MEX]
http://www.w3.org/TR/wsdl
Web Services Metadata Exchange, September 2004
http://xml.coverpages.org/WS-
MetadataExchange200409.pdf

[WSRF-RP] Web Services Resource Properties 1.2, OASIS,
Committee Draft 01, 18 May 2005
http://docs.oasis-open.org/wsrf/wsrf-
ws_resource_properties-1.2-spec-cd-01.pdf

[WSRF-RL] Web Services Resource Lifetime 1.2, OASIS, Committee
Draft 01, 19 May 2005,
http://docs.oasis-open.org/wsrf/wsrf-
ws_resource_lifetime-1.2-spec-cd-01.pdf

[WS-SEC] Web Services Security (WS-Security), Version 1.0,
OASIS, April 5, 2002.
http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0.pdf

[WS-SECX509] Phillip Hallam-Baker et al., eds., Web Services Security
X.509 Certificate Token Profile, OASIS Standard
200401, March 2004,
http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0.pdf

http://www.ietf.org/rfc/rfc2141.txt�
http://www.ietf.org/rfc/rfc2611.txt�
http://www.licensing.philips.com/vcps/�
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817�
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817�
http://xml.coverpages.org/WS-MetadataExchange200409.pdf�
http://xml.coverpages.org/WS-MetadataExchange200409.pdf�
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-cd-01.pdf�
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-cd-01.pdf�
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-cd-01.pdf�
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-cd-01.pdf�
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf�
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf�
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf�
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 16 of 154

[WS-SECX509-ER] Phillip Hallam-Baker et al., eds., Web Services Security
X.509 Certificate Token Profile, Errata 1.0, December
2005,
http://www.oasis-
open.org/committees/download.php/16796/oasis-
200512x509-token-profile-1.0-errata-005.pdf

[WS-SECSAML] Phillip Hallam-Baker et al., eds., Web Services Security:
SAML Token Profile, OASIS Standard, December 2004,
http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.0.pdf

[WS-TOPICS] Web Services Topics 1.2, OASIS, Working Draft 01, 22
July 2004

[X509] ITU-T Recommendation X.509 (1997 E): Information
Technology - Open Systems Interconnection - The
Directory: Authentication Framework, June 1997.

[XML-1-1] Extensible Markup Language (XML) 1.1 (Second
Edition),
http://www.w3.org/TR/xml11/

[xmldsig] XML-Signature Syntax and Processing W3C
Recommendation http://www.w3.org/TR/xmldsig-core/

[xmlenc] XML Encryption Syntax and Processing.W3C
Recommendation http://www.w3.org/TR/xmlenc-core/

[xml-exc-c14n] Exclusive XML Canonicalization, Version 1.0, W3C
Recommendation 18 July 2002
http://www.w3.org/TR/xml-exc-c14n/

[XMLns] Namespaces in XML. W3C Recommendation. T. Bray,
D. Hollander, A. Layman. January 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114

 353

1.6.2 Informative References 354
 355
[Coral] Coral Consortium Corporation http://www.coral-

interop.org
[3GPP] 3rd Generation Partnership Project, “Transparent

end-to-end packet switched streaming service
(PSS); 3GPP file format (3GP) (Release6)”, 3GPP
TS 26.244 V6.2.0, 2004-12.

[ISDB] ARIB STANDARD, “SERVICE INFORMATION FOR
DIGITAL BROADCASTING SYSTEM” ARIB STD-
B10, version 3.8. (http://www.dibeg.org/aribstd/STD-
B10-v3.8e.pdf).

[ItruObjectId] Intertrust X.500 Object Identifier Specification
[MGRSVRMS-Info] MagicGate Type-R for Secure Video Recording for

Memory Stick PRO Specification – Informational
Version – ver1.03

[MGRSARMS-Info] MagicGate Type-R for Secure Audio Recording for
Memory Stick and Memory Stick PRO Specification –
Informational Version – ver0.9

http://www.oasis-open.org/committees/download.php/16796/oasis-200512x509-token-profile-1.0-errata-005.pdf�
http://www.oasis-open.org/committees/download.php/16796/oasis-200512x509-token-profile-1.0-errata-005.pdf�
http://www.oasis-open.org/committees/download.php/16796/oasis-200512x509-token-profile-1.0-errata-005.pdf�
http://www.w3.org/TR/xmldsig-core/�
http://www.w3.org/TR/xmlenc-core/�
http://www.w3.org/TR/xml-exc-c14n/�
http://www.w3.org/TR/1999/REC-xml-names-19990114/�
http://www.coral-interop.org/�
http://www.coral-interop.org/�
http://www.dibeg.org/aribstd/STD-B10-v3.8e.pdf�
http://www.dibeg.org/aribstd/STD-B10-v3.8e.pdf�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 17 of 154

[PKCS7] RSA Laboratories. PKCS #7: Cryptographic
Message

Syntax Standard. Version 1.5, November 1993.
[PKCS8] RSA Laboratories. PKCS #8: Private-Key

Information
Syntax Standard. Version 1.2, November 1993.

[RFC3852] R. Housley, Cryptographic Message Syntax (CMS).
IETF RFC 3852. July 2004.
http://www.ietf.org/rfc/rfc3852.txt

[WS-POL] Web Services Security Policy Language
(WS-SecurityPolicy), Version 1.0, December 18,

2002
 356

http://www.ietf.org/rfc/rfc3852.txt�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 18 of 154

2 Marlin Core System Overview (Informative) 357
 358
Marlin defines a Digital Rights Management [DRM] system for consumer-friendly content 359
consumption models that allow consumers to enjoy appropriately licensed content 360
transparently on compliant and capable devices. 361
 362
The Marlin functional model (see Figure 2-1) allows content from different content 363
delivery channels to be governed using Marlin DRM. The model also enables content to 364
be made available on a set of compliant devices comprising an affiliation of the user’s 365
devices. We commonly refer to this affiliation of devices as a Marlin Domain or 366
“consumer domain” or even more succinctly as simply a “domain.” 367
 368
Marlin DRM ensures that Marlin Content is handled according to the original content 369
owner’s intents. Marlin specifies how content is made available to devices in a 370
consumer domain (Marlin Import Function), how Marlin Licenses express the rights to 371
access such content (Marlin Licenses), the protocols by which Marlin devices 372
communicate so that Content can be transferred between devices in the domain (or 373
exported from it), and the (file) formats for the content (Marlin Content Format.) This 374
level of specificity is necessary so that content can not only be transferred onto a Marlin-375
compliant device but also consumed on all devices in the Domain. 376
 377
Note that in this version of the specification, the Marlin Delivery System Specifications – 378
not the Marlin Core System Specifications - specify the Marlin Domains, as well as how 379
content is made available to the devices in a Domain, how Marlin Licenses are 380
generated from original content licenses or content owner intents, and how content is 381
packaged into a file container (Marlin Content) that can be consumed by other Marlin 382
Devices. In summary: 383

• The core specifications mandate only what is necessary to enable devices to 384
obtain and play content governed by a basic set of usage rules, become part of 385
or leave a domain, and obtain any necessary security metadata and DRM 386
objects to achieve the above. 387

• The delivery system specifications extend the core specifications, to specify how 388
different type of domains are formed and managed, how content is made 389
available on standalone devices or devices part of a domain, the usage rules that 390
govern access to content on devices in the domain and the movement of content 391
and licenses between devices. They enable an end to end DRM system 392
implementation for a given content delivery mechanism. 393

• The core specifications may be updated from time to time to include 394
specifications required to support a delivery system specification that was 395
defined later. Domain definitions that are independent of the delivery 396
mechanisms are an example of such an update. 397

 398
 399
Marlin Interoperability 400
 401
Marlin-compliant devices from different manufacturers should be interoperable – once 402
content has been imported into a Marlin Device Domain, it should be possible to play it 403

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 19 of 154

on any of the Domain’s devices as long as the device’s implementation of the core 404
system supports the consumption of that type of content. E.g. 405

• Any Marlin video-capable Marlin DRM Client should be able to play any Marlin 406
formatted video content as long as the codec profiles match. That is, 407
incompatibilities should not reside at the container, content protection, or 408
“minimum” license expression, functional or protocol level 409

Note the use of the “minimum” qualifier above: It is expected that specialized DRM 410
Client features may be necessary in order to support certain market-driven features. In 411
order to allow implementers to develop light-weight, conformant clients, some features of 412
the core specifications will be considered optional to be implemented, while those 413
necessary to ensure minimum interoperability will be mandatory. 414
 415
In summary, the Marlin Core Specification defines the DRM Objects, the Marlin Content 416
Formats, and the set of Marlin Device-side functions and protocols that all Marlin Core 417
System conformant implementations support and that any implementation of a Marlin 418
Delivery System Specification can rely on. 419
 420
 421

WAN
(Internet)
Content

Marlin
Domain

Broadcast
Content

Other

Sources
Future Spec(s)

Marlin
proxy

Import

Import

Figure 2-1: Marlin Functional Model

DRM ‘X’

CORAL

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 20 of 154

2.1 Scope of the Marlin Core System Specifications 422
 423
Marlin Core System Specifications are defined as those specifications that, when 424
implemented: 425

• Enable consumption of content imported via one of the Marlin Import functions 426
• Enable participation in the domains referenced by the licenses of such imported 427

content, using local protocols (broadband connectivity is not mandated for 428
devices implementing the Marlin Core System specification) 429

 430
Note that it may be necessary for a proxy application to implement a given Marlin 431
Delivery System mechanism to acquire the DRM objects representing participation in a 432
domain and acquire the necessary security metadata tokens – and other devices in the 433
domain should be able to use this proxy instead of implementing the Marlin Delivery 434
System specifications themselves. An example of this would be a Marlin compliant, 435
USB connected-only device that acquires content, licenses and metadata from a host 436
gateway to a broadband service. 437
 438

2.2 Marlin Core System Entities 439
 440
Marlin Entities are the Marlin objects and roles (client or service functions) that realize 441
the Marlin functional model. 442
 443
Marlin Entities are to a large extent specified using Octopus and Nemo technology (not 444
re-defined in this document). The necessary extensions of Octopus Nodes, Link and 445
License objects and of Nemo Nodes needed for Marlin are specified in detail in the later 446
sections of this document. 447
 448
Marlin clients or services are hosted by a Nemo Node which binds the client or service to 449
a Marlin certified identity for authentication purpose, and provides it the keys necessary 450
for message confidentially and integrity. Marlin further groups client and service 451
functionalities into Marlin Roles. The Roles are certified by a Marlin Certificate Authority 452
and required for establishing trust between clients and services. 453
 454
Marlin Nemo Nodes should at most only host one Marlin Role of each type. 455
 456
The Marlin Entities not already defined by Octopus or Nemo specifications are defined in 457
this section. Note that for ease of expression, “Octopus <type> Node” is equivalent to 458
“Octopus Node of Type <type>”. 459
 460
Marlin Content: 461

• Marlin Content is any media that has been encoded, encrypted and packaged 462
into a file container according to the specifications in this document. It is 463
expected that any Marlin DRM Client with the appropriate media rendering 464
capabilities can consume any Marlin Content, as long as the license permits it to 465
do so. 466

 467
Marlin User (Node & Link objects): 468

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 21 of 154

• Marlin Content is generally, although not always, associated with a user. A user 469
is a principal that holds the rights to the content. A user in Marlin is called a 470
Marlin User and is represented by an Octopus User Node. Marlin Devices may 471
be linked to User Nodes 472

 473
Marlin Domain (Nodes & Link objects) : 474

• A Marlin Domain Node represents an entity to which Marlin Devices may be 475
linked to form a collection of devices which make up a domain. A Marlin Domain 476
is represented by an Octopus Domain Node. 477

 478
Marlin Subscription (Node, Link, License objects): 479

• A Marlin Subscription Node is an entity used for grouping access to multiple 480
Marlin Content items under a single token. A Subscription Node is represented 481
by an Octopus Subscription Node. A Subscription License will typically include a 482
condition that a given Subscription Node be reachable from the Octopus 483
Personality node of the DRM Client attempting to access the content. The 484
access to many Marlin Content items can thus be governed by the availability of 485
a Subscription Link to a Subscription Node, and controls on this link may govern 486
the availability of the entire group of content items whose licenses reference this 487
Subscription Node. 488

 489
Marlin Device (role): 490

• A Marlin Device defines the minimum role implemented by any physical device 491
that conforms to the Marlin Core Specifications. It offers limited functionality and 492
is used primarily for Discovery and Identification. Usually a physical device will 493
implement additional roles, such as those described below. 494

 495
Marlin Domain Manager (role): 496

• A Domain Manager performs such functions as managing the initial formation of 497
a Marlin Devices Domain, allowing Marlin devices to register and remain in the 498
Domain according to the Domain Policy, and administering the departure of 499
Marlin Devices from the Domain. A Domain Manager hosts an Octopus Domain 500
Node, or a Marlin User Node if the domain is defined as linking Octopus 501
Personality Nodes to User Nodes. It implements any and all functions needed to 502
support Marlin Devices including Domain registration and de-registration. It 503
usually is accompanied by a Marlin DRM Object Provider and a Marlin Domain 504
Information Provider. 505

 506
Marlin Domain Information Provider (role): 507

• A Marlin Domain Information Provider is able to give information about Marlin 508
domains (ID and associated policy) it knows about and where DRM Clients can 509
register to these domains. 510

 511
Marlin DRM Client (role): 512

• A Marlin DRM Client is the entity authorized to evaluate Octopus Licenses and 513
release content keys to a DRM application for the uses indicated in Octopus 514
License. A Marlin DRM Client is represented by an Octopus Personality Node. It 515
hosts an Octopus Plankton DRM engine and other functions necessary to 516
execute the Octopus Controls included in the Octopus License or other objects 517

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 22 of 154

such as Octopus Links and Octopus Agents. It implements any and all functions 518
needed to evaluate licenses, execute the obligations of the licenses, acquire 519
DRM and Security Metadata Objects, and participate in Domain registration and 520
de-registration. 521

 522
Marlin Import function (role): 523

• A Marlin Import function may package non-Marlin Content into Marlin Content. It 524
generates an Octopus License that encodes the rights that the content owner 525
intends. The license should govern the content as it is accessed on devices. 526

 527
Marlin Security Data Provider (role): 528

• A Marlin Security Data Provider makes Security Metadata Objects (assertions, 529
CRLs, etc…) available to other entities, primarily Marlin DRM Clients. The 530
Security Data Provider is analogous to a Data Update Service which supplies 531
current security metadata objects (see Section 9.3.3.) 532

 533
Marlin DRM Object Provider (role): 534

• A Marlin DRM Object Provider makes DRM Objects (links and agents primarily) 535
available to other entities, primarily Marlin DRM Clients. A DRM Object Provider 536
also enforces any conditions required to make these objects available, such as 537
proximity checks if applicable 538

 539
Marlin Certification Authorities 540

• Marlin Certification Authorities issue certificates to services that directly or 541
indirectly provision other entities with Octopus Nodes, Links and Licenses, Nemo 542
Nodes, and Role or Security Metadata Assertions. They also issue keys and 543
their certificates needed by individual entities to verify the chain of trust and 544
validate signed objects. 545

 546
Implementations will most likely group specific sets of roles with a single Nemo node, as 547
for example in the following: 548
 549

• A typical device enabled for playing content would host a single Nemo node that 550
groups the following roles 551

o Marlin Device 552
o Marlin DRM Client (which includes the Octopus Personality Node part of 553

any entity that evaluates content licenses) 554
• A device that implements a domain manager would host a single Nemo node that 555

groups the following roles 556
o Marlin Device 557
o Marlin Domain Manager (as defined in a Delivery System specification) 558
o Security Data Provider 559
o Marlin DRM Object Provider 560

• A device that acts as a proxy to a Domain Manager would host a single Nemo 561
node and could group the following roles (note that such as device would not be 562
provisioned with an Octopus Node) 563

o Marlin Device 564
o Marlin Domain Information Provider 565
o Marlin DRM Object Provider 566

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 23 of 154

2.3 Marlin Domains 567
This section illustrates the concept of Marlin Device Domains. Domain specifications 568
have direct implications on specifications for protocols and DRM objects, so while this 569
section is informative, this specification may not support other types of domains than 570
those illustrated here. 571
 572
In the simplest terms, a Marlin Domain represents a collection of Marlin DRM Clients

 576

 573
that a private consumer considers their own and on which they expect to be allowed to 574
enjoy legally acquired digital content. 575

By necessity, this collection is a compromise between the desire of the customer and the 577
wants of the content and service industry that originate and distribute the content. Since 578
no unified definition of this compromise is currently available, this collection itself can 579
have several definitions depending on the type of content and the service provider. 580
 581
In order to establish and manage these collections of devices while respecting the terms 582
of the consumer-content industry compromise, Marlin defines Domain 583
Managers, Domain Policies

• A Domain Manager (usually a software entity, defined above) manages the 586
registration/deregistraton of Marlin Devices according to a Domain Policy 587

 and related data objects and functions that Marlin compliant 584
devices may optionally implement but must conform to. 585

• A Domain Policy expresses the rules for forming, registering and deregistering 588
devices to and from domains. It also defines what is permissible once a device 589
has left a domain. Domain Policies are enforced by the Domain Manager. While 590
DRM Clients may participate in the enforcement of the policy (e.g. participating in 591
a proximity control check), interpretation of the policies of the domains DRM 592
Clients are linked to is not required for the DRM Clients themselves. 593

 594
A domain is implemented by establishing and managing Nodes for Users and Domains, 595
and links between Marlin DRM Clients and Marlin User Nodes or Domain Nodes. 596
Presently, the policies that govern these are defined in the Delivery System 597
Specifications. The definition of the resulting nodes and links are part of the core 598
specification. 599
 600
Marlin Domain Topologies 601
 602
A Marlin Domain Topology

 605

 describes how Marlin Users, DRM Clients and Domain 603
Nodes are associated in a domain. 604

Topologies are described in terms of: 606
• DRM Clients – represented by an Octopus Personality Node that is the root of 607

the DRM engine that consumes content. 608
• Domain Managers – represented by an Octopus Domain or User Node that 609

represents the domain they administer. 610
• Marlin Users – represented by an Octopus User Node 611
• Octopus Links – that express relationships between Octopus Nodes of DRM 612

Clients, User Nodes, and Domain Nodes according to a desired domain topology 613
 614

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 24 of 154

The Marlin Core Specifications define Octopus Object extensions that can be used 615
by domain managers to encode in nodes, links and licenses the necessary domain-616
related metadata and controls for demonstrating active membership in a domain. 617
They also define protocols by which the objects can be obtained, and the metadata 618
queried. 619
 620
A certain subset of these domain–related metadata and controls is mandatory to 621
implement. 622
 623

Marlin Domain Policies 624
 625
The rules that govern whether a DRM Client can register with a Domain, and what the 626
consequences are when a device deregisters from a domain, are implemented by the 627
Domain Manager and the DRM Client Device in accordance with the Domain Policy. 628
 629
Note that different types of contents may be processed differently in a same domain, 630
according to the usage rules that govern the content. 631
 632
This version of the specifications defines DRM Objects and functions that can support a 633
set of Domain Policies Elements such as those defined below. 634
 635
Marlin Domain Policy Elements - Examples 636
 637
Domain Policies can be defined in terms of the following elements 638

• Domain Policy Identifier 639
• Registering Policy (per device type if differentiated) 640

o Number of domains of this type a device can register 641
o Max number of devices of a certain type that can be linked to a domain 642

node 643
o Max age of link before self-deactivation if not renewed 644
o Proximity check required for registering & acceptable RT delay. 645
 646

• Deregistration Policy - one of (per device type if differentiated) 647
o The deregistration policy uses Marlin Core System Protocols and 648

Octopus Objects in order to implement the intent of the policy, such as 649
whether the content that used to be accessible on the device prior to the 650
deregistration action should 651
 still play after the deregistration, or 652
 no longer play after the deregistration 653

2.4 Content Binding and Movement under Marlin Governance 654
Marlin Content is usually bound to an Octopus User Node, Domain Node, or Personality 655
Node and targeted
 657

 to an Octopus User Node, Subscription Node or Personality Node 656

When the content is bound

 662

 to a Node, the key that encrypts the content key is one of the 658
Scuba Sharing keys of that Node. To decrypt the content key, the DRM engine will look 659
for a set of links with scuba extensions, from the Octopus Personality Node of the DRM 660
client that attempts to access the content key, to the Node that the content is bound to. 661

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 25 of 154

When the content is targeted

 668

 to a Node, the control in the license will have a condition 663
that checks whether that Node is reachable. When the control is executed, the DRM 664
engine will look for a set of links (with or without scuba extensions) from the Octopus 665
Personality Node of the DRM client that attempts to access the content key, to the Node 666
that the content is targeted to 667

Note: If the content is bound to another node than it is targeted to, it is good practice to 669
also include a condition of node reachability for the node that the content is bound to. 670
This will allow the license evaluation to fail should the content be bound to a node that is 671
not reachable from the Octopus node of the DRM engine that attempts to access the 672
content. 673
 674
Combining Binding and Targeting offers a variety of content handling options: 675

• Binding and Targeting content to a (User or Domain) node linked to a set of 676
Marlin DRM clients (with scuba extensions on the links) allows the content to be 677
equally accessed on all the DRM clients (all other things such as device 678
capabilities and controls on the links being equal) 679

• Binding and/or Targeting the content to the Octopus Personality Node of a Marlin 680
DRM Client node prevents this content from being accessed on any other device 681
than that one 682

 683
Marlin defines move/copy protocols and actions that allow for the following: 684

• The license of content bound and/or targeted to the Octopus Personality Node of 685
a source DRM client can be “copied” or “moved” to the Octopus Personality Node 686
of a sink DRM Client. The conditions on this copy or move differ, depending on 687
whether or not the source and sink are linked to the same Octopus User or 688
Domain Node. For example: 689

o If the source and sink are linked to the same node, the action is a simple 690
re-binding of the license 691

o If the source and sink are not linked to the same node, or not linked to 692
any node, the action requires a proximity check between source and sink 693

The difference between move and copy is whether or not access to the 694
content on the source device is maintained after the completion of the 695
transaction. Move disables access on the source device, copy does not. All 696
other terms of the license remain in effect. 697
 698
Whether copy or move or both are allowed is expressed in the license of the 699
content, and therefore determined entirely by the import function of the 700
domain the content is imported into. 701
 702

Export from Marlin to Other DRM systems 703
Export is an operation by which Marlin contents are transferred to other DRM systems. 704
Whether the export operation is permitted is specified by usage rules in a license. Also 705
specified must be the usage rules to apply to the content in the target DRM. 706
 707
In export operations, Marlin export functionality does not specify the means of 708
transformation of license or contents for other DRM systems. 709
 710
For basic export mode, the original content (license) remains valid at the source Marlin 711
DRM Client after the export operations. 712

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 26 of 154

3 Marlin DRM Objects 713
 714
Marlin DRM Objects are Octopus objects ([8pus] §2) with Marlin-specific attributes 715
extensions, and encoding. 716
 717
Note: Certain Octopus Object Attributes or Extensions defined in this section are 718
optional. Unless expressly mentioned otherwise, when they are present in the Object, 719
they MUST be made available to the DRM engine for reference in control programs. 720

3.1 Octopus Objects 721

3.1.1 Node and Link Objects 722
As explained in [8pus] §2, Octopus Nodes represent entities that content can be “bound 723
to” in the DRM system (e.g. a device, a device group or a user). The Octopus node 724
representing a “license evaluating” entity (e.g. a device) is represented by a Personality 725
Node. 726
 727
Links are directed assertions between two Nodes. For example, a link from a device 728
node to a user node may indicate that the device belongs to the user. Links can be 729
thought of as “license enablers” in the sense that if a license requires user Node X to be 730
reachable, then the condition would be met if the device has a link from its personality 731
node to user Node X. 732

3.1.2 License Objects 733
As explained in [8pus] §2, the Octopus license objects are the following: 734

• ContentKey: represents the key, CK. CK is the key which encrypts the content. 735
The ContentKey object MAY contain one or more expressions of the encrypted 736
CK. 737

• Protector: associates one or more Content objects and a ContentKey object. 738
There is no need for a secure association here as the ContentKey object is 739
needed to decrypt the content. 740

• Control: represents how the content key, and therefore the content, is governed. 741
A Control object embeds [Plankton] bytecode that is executed according to a 742
protocol (see [8pus] §3) that returns a result for a particular Action query (e.g. 743
PLAY). Note that the Controls can be used in a different context than a License: 744
they can be used as “Agents” in order to execute plankton bytecode on a DRM 745
Client in order to initialize a counter for example. 746

• Controller: associates securely one or more ContentKey objects and a Control 747
object. 748

3.1.3 Lookup Scope for Spawned Controls 749
When a control program uses the System.Host.SpawnVm system call [8pus] §4.7.2.10 750
the ‘ModuleId’ parameter identifies a Control object to load. In this specification, the 751
following lookup rule to locate the Control object with the specified ID SHALL be used: 752

• Look in the same Bundle in which the control program issuing the system call is 753
located. 754

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 27 of 154

Since Control objects have globally unique IDs, the lookup search order is not relevant, 755
because in the case where more than one representation of the same Control object 756
with the specified ID exist, they all represent the same Control object. 757

3.1.4 Agent Conveyance for License Transfer 758
The Agent for Transfer action (see Section 5.7.6) included in a Control object MUST be 759
carried as an External Extension. The External Extension MUST have the following 760
properties: 761

• The External Extension is placed as the direct child element of the corresponding 762
License Bundle. 763

• The External Extension has the subject attribute which value has the same value 764
as the uid attribute of a Control object which includes the corresponding Transfer 765
action. 766

 767
The Control object which includes the Agent and carried in External Extension MUST 768
have PKI signature. The External Extension MUST contain one Bundle element. The 769
Control object and the PKI signature MUST be placed as the direct child elements of that 770
Bundle element. The PKI signature MUST have the following properties: 771

• The PKI signature has only one Reference which refers to the Control object for 772
the Agent. 773

• The signer of the PKI signature is same as the signer of the Controller object 774
associated with the Control object including the corresponding Transfer action. 775

If a license contains an Agent which uses the System.Host.SpawnVm system call to load 776
other Control objects, such Control objects SHALL be placed in the same Bundle 777
element in which the Agent issuing the system call is placed. Therefore, during License 778
Transfer, all the elements in the Bundle element containing the Agent SHALL be 779
included in the Agent Carrier. 780
 781
Note that HMAC and PKI signature for the Controller objects SHALL NOT have the 782
Reference for the External Extension nor the Control object for the Agent. 783

3.2 Octopus Object Attributes and Extensions 784

3.2.1 Octopus Nodes 785
Marlin defines various types of Octopus nodes with different attributes and extensions. A 786
DRM Client is NOT REQUIRED to check whether the required attributes appear in the 787
Octopus Object but it MAY return an error if a required attribute is not in the object. 788
 789
As introduced in Section 1.3.2, attribute and extension identifiers must begin with the 790
appropriate prefix. The following table defines the attribute prefix, types of nodes, their 791
values and the REQUIRED extensions. Unspecified attribute types have a default type 792
of string. 793
 794
urn:marlin:core:node:attribute:type

Node Type Attribute Value(s)
Personality personality
Domain domain
User user

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 28 of 154

Subscription subscription
Other *
Table 3-1 Octopus Node Types 795

The Scuba key requirements for the above Octopus Node types are outlined below. 796
When present these keys SHALL be carried in Octopus Node object extensions as 797
defined in [MCSV13] §3.3.3.1 and [8pus] §6.2.2. Server implementations MAY provision 798
and process Scuba keys for the Octopus Node types described below. Client 799
implementations SHALL support the Octopus Node and Octopus Link types it acquires 800
through the client implemented protocols. Client implementations SHALL be able to 801
derive Scuba Sharing keys carried in these acquired Octopus Links as defined in [8pus] 802
§6.5. 803

• Personality nodes SHALL include a Public/Private Scuba Sharing key pair 804

• Personality nodes SHALL include a Secret Scuba Sharing key 805

• Personality nodes SHALL include a HBES Device Keyset [Starfish] 806

• Personality nodes MAY include a Public/Private Scuba Confidentiality key pair 807

• User nodes SHALL include a Public/Private Scuba Sharing key pair and/or a 808
Secret Scuba Sharing key 809

• User nodes MAY include a Public/Private Scuba Confidentiality key pair 810

• Subscription nodes MAY include a Public/Private Scuba Sharing key pair and/or a 811
Secret Scuba Sharing key 812

• Domain nodes SHALL include a Secret Scuba Sharing key 813

• Domain nodes MAY include a Public/Private Scuba Sharing key pair 814
 815

Note that services distribute and use Scuba keys based on the business models they 816
implement. Octopus Nodes, Links and Scuba keys are generic technologies, when 817
implemented accordingly, enable services and clients to interoperate in a semantic-free 818
manner. 819
 820
Whenever an Octopus node contains one or more scuba public keys, the format of these 821
public key SHALL be the DER encoding of the ASN.1 structure SubjectPublicKeyInfo 822
defined in [RFC3280] §4.1. The identifier for this format is “SPKI”. 823
 824
In addition to the attributies which identify the node to be of a particular type, the 825
following attributes SHALL also be specified for certain node types: 826
 827
Node Type Attribute Identifier Attribute Type Attribute Value(s)
Personality urn:marlin:core:node:attri

bute:device-class
string Dedicated Device

Personal Computer
Portable Device

urn:marlin:core:node:attri
bute:device-features

array To be defined

Domain urn:marlin:core:node:attri
bute:domain-policy-type

string To be defined in
each delivery
system specification

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 29 of 154

Table 3-2 Node Attributes Values 828

The attribute values defined in Table 3-2 are terms which enable classification of the 829
node at a very coarse granularity. The following table provides guidance on the 830
semantics of these terms. 831
 832
Attribute Value Description
Dedicated Device A node in this class implies that it hosts a dedicated

application which, in general, permanently resides in a
home setting.

Personal Computer A node in this class implies that it hosts the DRM
application on an open application platform which, in
general, permanently resides in a home setting.

Portable Device A node in this class implies that it hosts the DRM
application on a dedicated platform which, in general, is
not necessarily permanently resident in a home setting.

Table 3-3 urn:marlin:core:node:attribute:device-class Attribute Value Descriptions 833

The urn:marlin:core:node:attribute:device-features attribute is an array of attributes (see 834
[8pus] §2.2.1.2). This OPTIONAL attribute is used as a container for describing the 835
permanent features of a device1

3.2.1.1 Octopus Personality Nodes 837

. 836

The following data elements SHALL be included in the private part of an Octopus 838
personality node. 839
 840

Data Description

Data for Secret Key of Scuba Sharing Key
Key Id URN for the scuba sharing secret key
Key Data Key data of the secret key
Data for Private Key of Scuba Sharing Key
Key Pair Id URN for the scuba sharing public/private key pair
Key Data Key data of the private key
Data for Device Key Set [Starfish]
Device Id Device Id defined in [Starfish] §3.2.2
Key Tree Id URN for the HBES Key Tree.
Algorithm Id Algorithm Identifier for the Starfish. It MUST be

set to http://marlin-
drm.com/starfish/algorithmID/1.0

Device Key Set Device Key Set defined in [Starfish] §3.3.1

Table 3-4 Data elements in the private part of an Octopus personality node 841

1 This attribute is intended to provide additional qualifiers to further distinguish the capabilities of a
device. Values will be defined in the future.

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 30 of 154

Refer to Section 3.3.3.1.1 for a description of the XML encoding of an Octopus 842
personality node. 843

3.2.2 Octopus Links 844
Links MAY have Scuba extensions that carry the encrypted private and secret scuba 845
sharing keys of the node “to” with the public or secret sharing key of the node “from”. 846
Links from personality to domain nodes MAY have several attributes: 847
 848

urn:marlin:link:attribute
Attribute Identifier Description
urn:marlin:link:attribute:domain-serial-number Domain serial number of the link
urn:marlin:link:attribute:link-type Type of link
urn:marlin:link:attribute:domain-policy Domain Policy
urn:marlin:link:attribute:domain-id Domain ID Context
Table 3-5 Link Attributes 849

• domain-serial-number: This OPTIONAL attribute carries the domain serial 850
number of the link. The presence of this attribute depends on whether the policy 851
of the domain requires it. 852

• link-type: This OPTIONAL attribute type of link. An example of value would be 853
device-to-domain. 854

• domain-policy: This attribute specifies the policy ID identifying the domain policy. 855
It is REQUIRED for all domain related links. 856

• domain-id: This attribute indicates the domain context for which this link is apart 857
of. It is REQUIRED for all domain related links.2

 859
 858

If the Link includes a Control Object, the attributes of the Link Object SHALL be visible to 860
the Plankton Virtual Machine running this Control under the following container: 861
 862
/Octopus/Link/Attributes/
 863
External Extensions SHALL have uid attributes that follow the URN definitions and 864
conventions defined in Section 1.3.3. 865

3.2.3 License objects 866
When the Control is run, all the attributes of the Control and Controller Objects SHALL 867
be visible to the Plankton Virtual Machine under the following containers (as specified in 868
[8pus] §3): 869
 870
/Octopus/Control/Attributes
/Octopus/Controller/Attributes
 871

2 A domain-id attribute MUST be a globally unique value. The representation MAY be a URI and it
may be best implemented as a random value encoded in the URI. A UUID would also be a
reasonable URI representation.

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 31 of 154

3.2.4 License Object Contexts 872
The purpose of license object contexts is to allow an implementation to delay the loading 873
of certain persistent objects, such as links, until it encounters a license that indicates that 874
those objects are needed for a successful evaluation of the license. 875

3.2.4.1 Contexts IDs 876
A Context ID is simply a unique ID that is used to tag objects, in order to indicate that 877
these objects are associated with a certain context. 878

3.2.4.2 Context Tag in Objects 879
For Link and Node objects, the context ID, if any exists, SHALL be carried as the value 880
of an object attribute named ‘ContextTag’. 881

3.2.4.3 Contexts in Bundles 882
When content licenses are created, and stored as a set of objects, signatures and other 883
elements in a Bundle, the license issuer MAY include one or more context IDs. This 884
signals to the host application that is processing the bundle that it SHOULD load in the 885
runtime environment all persistent objects that have a context tag equal to one of the 886
context IDs present in the Bundle. If the persistent objects with matching tags had 887
already been loaded, no action is required of the application or device. The application 888
or device MAY unload or cleanup those objects when it is done processing the content 889
related to that Bundle. 890
 891

3.3 XML Encoding of Octopus Objects 892

3.3.1 Overview 893
Marlin defines its own XML schema. This schema imports the Octopus XML schema and 894
adds elements specific to Marlin (for example, the revocation extension.) 895
The encoding of Octopus objects in XML MUST be valid instances of the schema 896
elements defined by this specification. 897

3.3.2 General Schema Design 898
The XML representation of all the Octopus objects is based on the complex type 899
<oct:OctopusObjectType>. Thus, all the Octopus objects SHALL support attributes and 900
extensions. The type of each Octopus Object element is derived from this base type. 901
These types may aggregate other elements such as the <oct:SecretKey> element for 902
the <oct:ContentKeyType> for instance. 903
 904
The key distribution system keys ([8pus] §6) SHALL be described in the terms of an 905
extension: the <oct:ScubaKeys> element SHALL then be a child of the <oct:Extension> 906
element. The same SHALL be true for revocation keys with the <oct:Torpedo> 907
revocation extension defined in Marlin schema. 908
 909
As explained in [8pus] §2, there are different kinds of Octopus Objects (ContentKey, 910
Protector, Controller, Control, Node and Link). These objects can be bundled together as 911
well as Extensions using the <oct:Bundle> element. If objects or extensions are signed 912

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 32 of 154

within the <oct:Bundle>, the <oct:Bundle> SHALL contain <ds:Signature> elements 913
defined in [xmldsig] and in accordance with the profile in Section 3.3.4. 914
 915
In the case where a license uses a revocation extension such as broadcast encryption (a 916
DRM Client has been revoked), the <sf:BroadcastKeyblock> SHALL be carried inside 917
the <oct:Bundle> (see Section 7.4). 918
 919
In the case where the license creator wants to advertise that this license needs a certain 920
context to be loaded (which maps to a set of Octopus Links), the <oct:Bundle> MAY also 921
embed a <ml:ContextList> element carrying all the needed <ml:Context> URIs. 922

3.3.3 Additional Constraints on the Schema 923

3.3.3.1 Nodes 924
Nodes contain keys (in Extensions such as ScubaKeys.) It should be possible to 925
separate the public information of the Node (the id, attributes and public keys) and its 926
private extensions (that will carry the secret and private keys). Moreover, there should 927
be one signature per part (the public and the private) so that the public node with its 928
signature can be exported as is (as a parameter of the request to a registration service 929
for example.) 930
 931
According to the taxonomy of [8pus] §2, the private extensions must be carried in an 932
ExternalExtension and signed. Thus for the XML representation of the public Node and 933
its private Extensions MAY be packaged in the same <oct:Bundle> element or MAY 934
arrive separately. 935
 936
Whenever an Octopus node contains one or more scuba public keys, the attributes of 937
the KeyData element carrying these keys SHALL be: 938

• encoding=”base64” 939
• format=”X509SPKI” 940

3.3.3.1.1 Personality Nodes 941
Personality Nodes may include confidential information. When the data elements 942
concerning a Secret Key and/or a Private Key of a Scuba Sharing Key are encoded in 943
an XML format, then the schema defined by the namespace http://www.octopus-944
drm.com/profiles/base/1.0 may be used for the encoding. 945
The following is an example of an XML fragment of the private part of an Octopus 946
personality node within a Scuba extension. Note that the namespace 947
xmlns:oct=”http://www.octopus-drm.com/profiles/base/1.0” is assumed for this example. 948
 949
[01] <oct:ScubaKeys>
[02] <oct:SecretKey
 uid="urn:marlin:organization:phony:octopus-personality:01:secret-sharing"
 usage="KeySharing">
[03] <oct:KeyData encoding="base64"
 format="RAW">Z8Zpc1H…=</oct:KeyData>
[04] </oct:SecretKey>
[05] <oct:PrivateKey
 uid="urn:marlin:organization:phony:octopus-personality:01:private-sharing"

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 33 of 154

 pair="urn:marlin:organization: phony:octopus-personality:01:pair-sharing"
 usage="KeySharing">
[06] <oct:KeyData encoding="base64"
 format="PKCS#8">MIIC…=</oct:KeyData>
[07] </oct:PrivateKey>
[08] </oct:ScubaKeys>
 950
Line [02], in the above example, uid attribute indicates Key Id in Table 3-4. 951
 952
Line [03], in the above example, the <oct:KeyData> element carries the base64 encoded 953
value of the secret key. 954
 955
Line [05], in the above example, pair attribute indicates Key Pair Id in Table 3-4. 956
 957
Line [06], in the above example, the <oct:KeyData> element carries the base64 encoded 958
value of the private key in the format specified by [PKCS8]. 959
 960
When data elements concerning a Device Key Set [Starfish] are encoded in an XML 961
format, the schema defined by the http://marlin-drm.com/starfish/1.2 namespace MAY 962
be used for the encoding. 963
The following is an example of an XML fragment of the Torpedo extension of the private 964
part of an Octopus personality node. Note that we assume the xmlns:ml=”http://marlin-965
drm.com/1.0” attribute has been defined in this example. 966
 967
[01] <ml:Torpedo>
[02] <ml:BroadcastKey uid="0F2A130003000002"
[03] source=" urn:marlin:starfish:keytree:1">
[04] <ml:BroadcastKeyMethod
[05] Algorithm="http://marlin-drm.com/starfish/algorithmID/1.0"/>
[06] <oct:KeyData encoding="base64"
[07] format="RAW">Z8Zpc1H…=</oct:KeyData>
[08] </ml:BroadcastKey>
[09] </ml:Torpedo>
 968
Line [02], in the above example, uid attribute indicates ASCII hex representation of 969
Device ID, and source attribute indicates the name of the Key Tree Id in Table 3-4. 970
 971
Line [04], in the above example, algorithm attribute indicates Algorithm Id in Table 3-4. 972
 973
On Line [06], in the above example, the <oct:KeyData> element carries the base64 974
encoded value of the Device Key Set in Table 3-4. 975

3.3.3.1.2 Attributes 976
Each XML encoding of a Node object SHALL carry an <oct:AttributeList> with the 977
<oct:Attribute>(s) as defined in Section 3.2.1. 978
Example: 979
 980
<oct:AttributeList xmlns="http://www.octopus-drm.com/profiles/base/1.0">
 <oct:Attribute name="urn:marlin:core:node:attribute:type">user</oct:Attribute>

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 34 of 154

</oct:AttributeList>

3.3.3.1.3 Extensions 981
All the public keys SHALL be carried inside the <oct:Node> element (in an 982
<oct:Extension> element in the <oct:ExtensionList>). Other keys SHALL be carried in a 983
separate <oct:Extension> element outside of the <oct:Node> element. 984
 985
Marlin SHALL follow the Octopus Objects specification ([8pus] §2). The 986
<oct:ScubaKeys> extensions SHALL be signed in the <oct:Node>. This means that the 987
internal <oct:Extension> carrying <oct:ScubaKeys> inside the <oct:Node> (public keys) 988
SHALL include a <ds:DigestMethod> element as well as a <ds:DigestValue> element. 989
These elements MUST follow the guidance given in Section 3.3.4. 990

3.3.3.2 Links 991
The <oct:LinkTo> and <oct:LinkFrom> elements SHALL only carry a <oct:Uid> element 992
(i.e. no <oct:Digest> element). 993
 994
The <oct:Control> element is optional. 995

3.3.3.2.1 Attributes 996
Link attributes defined in Section 3.2.2. MUST be encoded in XML following the Octopus 997
schema and packaged in an <oct:AttributeList>. 998
 999
Example: 1000
<oct:AttributeList xmlns=" http://www.octopus-drm.com/profiles/base/1.0">
 <oct:Attribute name="urn:marlin:link:attribute:domain-id">
 urn:marlin:domain:29490343</oct:Attribute>
 <oct:Attribute name="urn:marlin:link:attribute:domain-policy">
 urn:marlin:broadcast:domain-policy:organization:phony:fuse:policy:0
 </oct:Attribute>
</oct:AttributeList>

3.3.3.2.2 Extensions 1001
Links MAY have <oct:ScubaKeys> internal extensions carried inside the <oct:Link> 1002
element. When they do, the <oct:ExtensionList> element MUST be present. 1003
 1004
According to [8pus] §2, within a Link, the <oct:ScubaKeys> extension is not signed. 1005
Therefore, the <ds:DigestMethod> and <ds:DigestValue> elements SHALL NOT be 1006
carried inside the <oct:Extension> element. 1007
 1008
The <oct:ScubaKeys> extension contains an encrypted version of the private/secret 1009
Scuba Sharing keys (in a <oct:PrivateKey> and a <oct:SecretKey> element) of the “to” 1010
Node with the public or secret Scuba Sharing key of the “from” Node. This encryption 1011
SHALL be expressed using the syntax specified in [xmlenc]. 1012
 1013
The oct:encoding attribute of the <oct:KeyData> element, a child of the both the 1014
<oct:PrivateKey> and <oct:SecretKey> elements, MUST be set to “xmlenc”. 1015
 1016

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 35 of 154

The child of this <oct:KeyData> element MUST be an <xenc:EncryptedData> element. 1017
The name of the encryption key MUST be advertised in the 1018
<ds:KeyInfo>/<ds:KeyName> element. 1019
 1020
Note: Encrypting with a public key 1021
If the encryption key is a public key, then: 1022
• The <ds:KeyName> element MUST be the name of the pair to which the key belongs 1023

to. This element MUST reflect the same identity as paired field specified in [8pus] 1024
§2.4.5. 1025

• In case the encrypted data (a private key for example) is too big to be encrypted 1026
directly with a public key, an intermediary 128 bit secret key is generated. The data 1027
MUST be encrypted with this intermediary key using [aes-128-cbc] and the 1028
intermediary key MUST be encrypted with the public key. The encrypted 1029
intermediary key MUST be encoded in a <ds:EncryptedKey> element. A example 1030
follows: 1031

 1032
<!-- E(I, data) -->
<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <!-- E(PUBa, I) -->
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>urn:x-octopus:key-pair:300a</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>
fFeGD4KAPEmESz/jW6CkbRegpM5kyH0Oy/o/uDQ78PaShtvUMoozeO4a0b785YnB
13Qa1ZUEYqR9V5TCUaOcH7wxxvBEIsd1nYKkVOgW/kFnRr98UDFvU90PRqaEP/SA
Bb+JuAUmvxYX47qOVQqBQGGqzFssBDKmUk+s98dkPR8=
 </CipherValue>
 </CipherData>
 </EncryptedKey>
 </KeyInfo>
 <CipherData>
 <CipherValue>
c8LBj4BLzGOYv/GT3Y4w2XcwTYbr8fHNJhCOQjULuvoha/QYvZKKCpUY+nuCXC/s
t9TU+8tMtaMt1GUpkCZQhSaTNcluCSxOyBoA6Xh/bmyZLDJ78+aJ/sITmfNpJGdb
vTaI7x9DD1Mp1mvFEjpAUjTTvruN32g4bxsF7FD8C1RWNAc4hS96nFDgrmzoO5pR
dda6mswFKG5B0kY7mYbhacb1owXkAk1Wc/OuXA+QLHdUthxeajoXNPfAGRz9FM3b
puJxbxDAaaAJDxoReiTtS1nGaHhqa1hvLCpKk1zHBowHyvTvDLElLjHYEPeG6xSH
BbzpT298tdKUhXfaY6vvdceMdVXuBVL3eZP1jkJHDxeaBy1ce8xlQKZpo6Pjuxlb
bn5KUMt/PxWp7rLa5s786S740cwuN63+ZRgienxPK1CnYO3htMJ7hh/agvO9IyUD
RvcgnSEY9KA5Exy/6gIS/gouIjFU8r7056XcE4/IBodTWDkfyli/y8q5QA/0VaD9
Y3oER1p3pYuHwn/IeXM4gsBD31cgd7nvfK7lKYkZjowR9P6pSy57a+K4LZKDmfUH
zG/gZs2XcoPb9o6mVAEEej7+aLwqmoileykkR+0pkFntvqvXYRPkphhcVdzjzlMV
scpXBXfWx7wbQURXkiew7R4RihQy3wcv+ZFJpl9NsAE1yqyWy4rBobzZ7cTNMtfR
znhVlt+Wwq5G0IBxzU9WIFzFd/Rn2H9L4TI71LCa4VR3uNpf+XM8lp9LjLPRUnNh
28KrMdAddceyopYyiIF5p8idfh0//a/LKdE7JAk0q9ewk19ryqfl6CFeKI5oOMjh
kzNx3BR/iHxm31HIe3ZKtA==

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 36 of 154

 </CipherValue>
</CipherData>
</EncryptedData>

3.3.3.3 Protector 1033
The <oct:ContentKeyReference> element MUST contain a <oct:Uid> element and 1034
MUST NOT include a <oct:Digest> element. 1035
 1036
The <oct:ContentReference> elements (inside the <oct:ProtectedTargets> element) 1037
MUST contain a <oct:Uid> element and MUST NOT include a <oct:Digest> element. 1038
 1039
Protector objects contain no mandatory attributes or extensions. 1040

3.3.3.4 ContentKey 1041
ContentKey objects contain no mandatory attributes or extensions. Therefore the 1042
<oct:AttributeList> and <oct:ExtensionList> elements are optional and MAY be ignored. 1043
 1044
<oct:ContentKey> elements contain a <oct:SecretKey> element which represent the 1045
actual key needed to decrypt the content. The <oct:KeyData> associated with the 1046
<oct:SecretKey> MUST be encrypted. Therefore the oct:encoding attribute of 1047
<oct:KeyData> MUST be set to “xmlenc”. There MAY be several <oct:KeyData> 1048
elements if there are multiple expressions of the encrypted content key in the object. 1049
 1050
There are two distinct cases for ContentKey objects (see Section 7): 1051

a. Before the first revocation of a device or a PC application: in this case, the 1052
content key CK represented by the <oct:SecretKey> element MUST be 1053
encrypted by a Scuba key (public or secret) of the entity to which the content is 1054
bound to (for example the user.) See Section 7.3. 1055

b. After the first revocation the content key MUST first be encrypted according to 1056
the [Starfish] broadcast encryption scheme. The resulting data is then encrypted 1057
with a Scuba key (public or secret) of the entity to which the content is bound to. 1058
See Section 7.4. 1059

3.3.3.5 Controller 1060
Controller objects MAY contain attributes or internal extensions. However, when these 1061
elements are present in either a <oct:AttributeList> or <oct:ExtensionList> elements then 1062
these elements SHALL be processed. 1063
 1064
An optional Domain Serial Number MAY be attached to the Controller object depending 1065
on the domain policy. When present it SHALL be visible to the Plankton Virtual Machine 1066
as described in Section 3.2.3. 1067
 1068
The <oct:ControlReference> MUST have a <oct:Digest> element. The <ds:DigestValue> 1069
element MUST contain the base64 [MIME] encoding of the digest of the referenced 1070
control (see [8pus] §2). 1071
 1072
The <oct:ContentKeyReference> MUST have a <oct:Digest> element. The 1073
<ds:DigestValue> element MUST contain the base64 [MIME] encoding of the digest of 1074

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 37 of 154

the referenced ContentKey (see [8pus] §2). The the algorithms, identifiers and 1075
representation of the <oct:Digest> MUST follow the guidance given in Section 3.3.4 1076

3.3.3.6 Control 1077
Control objects MAY contain attributes or internal extensions. When these elements are 1078
present in either a <oct:AttributeList> or <oct:ExtensionList> elements, these elements 1079
SHALL made available to the DRM engine. 1080
 1081
The oct:protocol attribute of the <oct:ControlProgram> element MUST be signaled using 1082
the Standard Control Protocol identifier defined in [8pus] §3.2.3. 1083
 1084
The oct:type attribute of the <oct:CodeModule> element MUST be signaled using the 1085
Plankton Control Module identifier defined in [8pus] §3.2.4. 1086

3.3.4 Signatures: Use of XML Digital Signature [xmldsig] 1087
According to the Octopus Objects specification ([8pus] §2) the Octopus objects that are 1088
directly signed (unless an exception is given) include: 1089

• Nodes 1090
• Links 1091
• Controllers 1092
• Controls 1093

o A Control need not be directly signed if it is indirectly covered by a secure 1094
digest in a referring Controller object. 1095

o A Control need not be independently signed if it is covered by the 1096
signature of a containing Link object. 1097

• Extensions (depending on the data they carry) 1098
 1099
The signatures MUST follow the profile given in Section 12.2. A <ds:Signature> element 1100
SHALL be present in the <oct:Bundle> object that contains the XML representation of 1101
the signed Octopus objects. There MAY be multiple signatures covering the same object 1102
such as a Controller being covered by a (certified) public key signature and an HMAC 1103
(symmetric key) signature. 1104

3.3.4.1 Controller Objects 1105
Controller objects MUST have at least one HMAC signature for each ContentKey 1106
referenced in its list of controlled targets. The key used for each of those signatures 1107
MUST be the content key contained in the ContentKey object referenced. 1108
The DRM Client MUST verify the HMAC signature for every Controller object prior to 1109
invoking the Perform routine of any Action [8pus] §3.2.6.3 on an Octopus Control. 1110

 1111
Controllers MAY also have a public key signature. If such a signature is present, this 1112
signature MUST also appear as a <ds:Reference> in each of the HMAC signatures for 1113
the object. To achieve this, this <ds:Signature> element MUST have an xs:ID-typed 1114
attribute (unique within the enclosing XML document) which is used as the ds:URI 1115
attribute in one of the <ds:Reference> elements of each of the HMAC signatures. The 1116
verifier MUST verify the public key signature if it is present. The verifier MUST reject 1117
public key signatures that are not corroborated by the HMAC signature. 1118

 1119
Example: 1120

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 38 of 154

 1121
<ds:Signature Id="Signature.0" >
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#Controller">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.octopus-drm.com/octopus/specs/cbs-1_0"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>G1zXF9Sz/zCwH6MaFm0ObOQcxuk=/ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

<ds:SignatureValue>mjoyW+w2S9iZDG/ha4eWYD1RmhQuqRuuSN977NODpzwUD02FdsAIC
VjAcw7f4nFWuvtawW/clFzY
P/pjFebESCvurHUsEaR1/LYLDkpWWxh/LlEp4r3yR9kUs0AU5a4BDxDxQE7nUdqU9YMpnjAZ
EGpu
xdPeZJM1vyKqNDpTk94=</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data><ds:X509Certificate>MIICh...</ds:X509Certificate></ds:X509Data>
</ds:KeyInfo>
</ds:Signature>
<ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <ds:Reference URI="#Signature.0">
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>AqPV0nvNj/vc51IcMyKJngGNKtM=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#Controller">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.octopus-drm.com/octopus/specs/cbs-1_0"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>G1zXF9Sz/zCwH6MaFm0ObOQcxuk=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>TcKBsZZy+Yp3doOkZ62LTfY+ntQ=</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:KeyName>urn:x-octopus:secret-key:2001</ds:KeyName>
 </ds:KeyInfo>
</ds:Signature>

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 39 of 154

4 Marlin Core System Roles and Services 1122
Marlin Core system entities implement the defined Marlin Roles and Services. Certain 1123
Roles are optional. However, when implemented, they MUST conform to the 1124
specification. Certain typical device functions MAY require the aggregation of several 1125
Roles. For example, a Media Device that wants to render Marlin content MUST 1126
implement the Device Role and the DRM Client Role. 1127

4.1 Overview 1128
This section defines the roles and services part of the Marlin specifications. This section 1129
will enumerate these roles and the services and clients they correspond to. A later 1130
section of this document specifies the messages and protocols by which the client and 1131
services communicate. 1132
 1133

Roles Services Clients
Device Inspection Inspection
 Provide Security Data
Domain Information
Provider (opt)

Provide Domain Information

Security Data Provider
(opt)

Provide Security Data
(event-driven)

DRM Client Information

DRM Object Provider
(opt)

Provide DRM Objects
(event-driven)

Proximity Check

 DRM Client Information
DRM Client (opt) Proximity Check Proximity Check

License Transfer License Transfer
DRM Client Information Provide DRM Objects

 Domain Information (opt)

Table 4-1 Role to Client/Service Mapping 1134

(opt) indicates that the implementation of this service/client is OPTIONAL 1135
(event-driven) means that clients MAY subscribe to receive triggers to access this 1136
service, see the section on protocols. 1137
 1138
The following table summarizes the set of URIs used as attribute values for conveying 1139
the above roles. 1140
Role URI
Device urn:marlin:core:role:device
Domain Info Provider urn:marlin:core:role:domain-information-provider
Security Data Provider urn:marlin:core:role:security-data-provider
DRM Object Provider urn:marlin:core:role:drm-object-provider
DRM Client urn:marlin:core:role:drm-client
Table 4-2 Role Identifiers 1141

Refer to Section 12.5.4.2 for a description of the mechanism used to convey the role 1142
information. 1143

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 40 of 154

4.2 Roles Definitions 1144
 1145
Note: According to [NEMO] §4, roles SHALL be encoded as SAML 1.1 [SAML1.1] 1146
attribute assertions. Also note that we have defined namespace equivalence for this 1147
specific attribute namespace (see Table 1-3.) 1148

4.2.1 Device 1149
Each NEMO Node implemented on a Marlin core host SHALL have this role. This means 1150
that all the nodes in Marlin MUST implement an Inspection service and client based on 1151
WS-MetadataExchange [WS-MEX]. 1152
 1153
All Marlin devices SHALL be able to access a Security Data Provider so that they can 1154
update themselves with new security metadata. They MAY subscribe to Security Data 1155
Events and receive notifications when new Security Metadata is available for them. 1156

4.2.2 Domain Information Provider 1157
Each NEMO Node implementing this role SHALL be able to get domain information 1158
requests from DRM Clients and provide DRM Clients with the information about the 1159
domains they know about including the Provide DRM Objects service endpoint where 1160
they can register/deregister to the domain. 1161
 1162
The interaction between the Domain Information Provider, the Domain Manager and the 1163
DRM Object Provider is not part of the core specification and will be specified for each 1164
type of domain in the delivery system specifications. 1165

4.2.3 Security Data Provider 1166
Each NEMO Node implementing this role SHALL be able to provide Devices with 1167
Security Metadata. The Provide Security Data Service is event-driven so that Marlin 1168
Devices can subscribe to Security Data Events in order to receive notifications when 1169
new Security Metadata is available for them (the same way DRM Clients do for DRM 1170
Object Providers, see below). 1171

4.2.4 DRM Object Provider 1172
Each NEMO node implementing this role SHALL be able to provide DRM clients with 1173
DRM objects in a generic way. Such a role MAY be used in conjunction with a domain 1174
manager and serve as a repository for getting the latest membership tokens of a 1175
domain. 1176
 1177
The service hosted by a DRM Object Provider SHALL be event-driven, which means 1178
that clients (here DRM Clients) MAY subscribe to notifications that trigger the invocation 1179
of the DRM Object Provider service. 1180
DRM Clients MAY ask to subscribe to DRM Objects notifications. In this case, when the 1181
DRM Object Provider has new objects for the subscriber, it SHALL notify the client. 1182
Subsequent to notification the DRM client can invoke the DRM Object Provider service 1183
and get the objects (Event-driven invocation). The DRM Client MAY also invoke the 1184
DRM Object Provide service directly without notification (direct invocation). 1185
 1186
DRM Clients SHOULD subscribe to notification events of DRM Object Providers 1187

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 41 of 154

 1188

4.2.5 DRM Client 1189
Each NEMO node implementing this role SHALL be able to: 1190

• Export information about its Octopus Personality Node as well as its Security 1191
Metadata. 1192

• Be the sink device in a proximity check (so that a Domain Manager, if required by 1193
the domain policy, can determine whether or not the DRM Client can be 1194
registered to the domain. 1195

• Check the proximity to another DRM. 1196
• Invoke a Provide DRM Objects Service (directly or through 1197

subscription/notification) 1198
 1199
Each NEMO node implementing this role MAY: 1200

• Request information of the Domain Information Provider (the IDs of the Octopus 1201
Nodes representing the Domains that the Domain Information Provider can 1202
access, as well as the type of Policy of these Domains and which DRM Object 1203
Provider to talk to in order to register to these domains). 1204

 1205
 1206
 1207

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 42 of 154

5 Marlin Core System Protocols 1208
 1209
This section defines the core connectivity of Marlin devices. 1210
 1211

5.1 NEMO Architecture for Marlin 1212

5.1.1 Concepts and Architecture 1213
In Marlin, communicating entities are NEMO nodes. These nodes have a set of 1214
credentials which are keys and attributes. The attributes of primary importance in Marlin 1215
are called roles. When a NEMO node has been certified as having a certain role, it 1216
implies that this node implements a number of services and clients. Of course, a single 1217
NEMO node may have multiple roles. 1218
 1219
The figure below details the components of the NEMO Marlin Architecture 1220
 1221

 1222
Figure 5-1 Example: NEMO Marlin Architecture 1223

 1224
NOTE: 1225
In Figure 5-1, the Announcer and the Discoverer are not part of a NEMO node but a 1226
given implementation could include them in the boundaries of a NEMO Node. 1227

Marlin Host
 NEMO Node

Discoverer

Role X
 Service 1 Service 2

Example Role

Proximity measurement service

Inspection Service

Inspection Client

Announcer

DRM Object Provider Client

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 43 of 154

5.1.1.1 NEMO Nodes 1228
NEMO nodes are logical entities that have two types of credentials: 1229

• Authentication and Encryption keys: these are certified by an identity provider 1230
that binds the ID of the NEMO node and these keys. 1231

• Certified attributes that are issued for the Node (bound to the node ID). 1232
Specifically, Marlin defines role and specification version attributes. A Node can 1233
have (or “implement”) multiple roles. Roles are further described below. 1234

 1235
Logically there can be multiple NEMO nodes on a Marlin Host. However, such an 1236
implementation decision would not impact the Discovery, Inspection and Service Access 1237
architecture. 1238

5.1.1.2 NEMO Roles 1239
As in [Coral], having a NEMO role implies that a set of services (and clients) are 1240
implemented by a NEMO node. The NEMO roles for Marlin are defined in Section 4.1 of 1241
this document. 1242

5.1.1.3 Announcer 1243
The announcer is the building block that implements the Discovery advertisements for 1244
the NEMO node. The announcer MAY be shared between multiple NEMO nodes. It is 1245
also responsible for answering Discovery search requests sent by other hosts 1246
discoverers. 1247

5.1.1.4 Discoverer 1248
The discoverer is responsible for sending the Discovery search requests and handling 1249
the Discovery search responses and advertisements. It SHOULD pass information to the 1250
Inspection client so that the service being searched for can be inspected. Like the 1251
announcer, it MAY be shared between multiple NEMO nodes. 1252

5.1.1.5 Inspection Client 1253
The inspection client utilizes [WS-MEX] for the inspection phase. It will get the necessary 1254
information (e.g., WSDL) so that the requesting NEMO node can invoke the service 1255
being searched for. 1256
 1257

5.2 Message Security Policies 1258

5.2.1 Overview 1259
The NEMO Security Bindings specification ([NEMO] §3) defines the NEMO basic 1260
security protocol. This protocol SHALL be used in Marlin for message security. 1261
 1262
Trusted time SHALL be used in order to check all the NEMO credentials ([X509] public 1263
key certificates and SAML Assertions). Trusted time SHALL also be used when a 1264
message timestamp is required (in the case of ‘Integrity + Freshness’ or ‘Full Security’). 1265
 1266
The table below summarizes the different modes of this protocol: 1267
 1268
Protocol Policy Integrity Nonce Timestamp Confidentia

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 44 of 154

lity
No Security NO NO NO NO
Freshness Only NO YES OPTIONAL NO
Integrity Only YES NO NO NO
Integrity + Freshness YES YES YES NO
Confidentiality Only NO NO NO YES
Full Security YES YES YES YES
Table 5-1 Protocol Policy Characteristics 1269

For a given message exchange, compatible message security policies SHALL be 1270
implemented. Compatible message security policies which will not hinder a receiver from 1271
implementing its policy. The following matrix outlines the compatible policies. 1272
 1273
Receiver Protocol Policy Compatible Sender Protocol Policy
No Security No Security, Freshness Only, Integrity Only,

Integrity + Freshness
Freshness Only Freshness Only, Integrity + Freshness
Integrity Only Integrity Only, Integrity + Freshness
Integrity + Freshness Integrity + Freshness
Confidentiality Only Confidentiality Only, Full Security
Full Security Full Security
Table 5-2 Compatible Policies 1274

5.2.2 Protocol Security Policy Identifiers 1275
Each of the services defined by this specification informatively describes the protocol 1276
security policies of the service. This specification normatively defines the each of the 1277
desired policies using URIs. 1278
 1279
We anticipate that the protocol security policies defined in this specification and in 1280
delivery system specifications will be added or change. With that in mind it is desirable to 1281
maintain a uniform identification scheme as outlined in Section1.3.3. However, we do 1282
deviate from this slightly in order to indicate the version of the specification the identifier 1283
is introduced and to support the possiblility that two or more policies for the same service 1284
could be introduced in that specification version. 1285
For example; 1286
 1287
 urn:marlin:core:1-2:nemo:services:foobar:policy:0 1288
 urn:marlin:core:1-2:nemo:services:foobar:policy:1 1289
 1290
reflect the policies of the “foobar” service. This identifier also indicates that the policy 1291
was introduces in version 1.2 (“1-2”) of the specification and that there are two distinct 1292
policies for the service (policy “0” and policy “1”).3

3 Note that in previous specifications we used “1.x” rather than “1-x” but going forward we intend
to use the dash form. Since this is merely an identifier to be evaluated as a whole this does not
pose any incompatibilities.

 1293

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 45 of 154

5.2.3 Request Policies 1294
The request policies (except the ‘No Security’) may mandate the inclusion of some or all 1295
the security credentials of the client. The following example depicts these credentials: 1296
 1297
<!-- Client's NEMO Encryption Key -->
<wssp:SecurityToken
 nemosec:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-encryptionKey">
 <wssp:TokenType>
 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1
 </wssp:TokenType>
</wssp:SecurityToken>

<!-- Client's NEMO Authentication Key -->
<wssp:SecurityToken
 nemosec:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-signingKey">
 <wssp:TokenType>
 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1
 </wssp:TokenType>
</wssp:SecurityToken>

<!-- Client's Roles (application policy attribute tokens) -->
<wssp:SecurityToken> + <!-- one or more -->
 <wssp:TokenType>
 http://nemo.intertrust.com/2004/attribute/role</wssp:TokenType>
</wssp:SecurityToken>
 1298
To minimize repetition the above example will be referenced in the following sections as 1299
&client-credentials; 1300

5.2.3.1 No Security 1301
This policy does not add any protection to the message. Note that the use of this policy 1302
may be sub-optimal with respect to the requirements of the response policy. For 1303
example, if the response policy requires ‘Freshness’ then it is incumbent upon the 1304
requester to seed the protocol with the proper data. 1305

5.2.3.2 Freshness Only 1306
This policy enables seeding of the response policy when it requires ‘Freshness’. This 1307
message exchange pattern assumes that the requestor retains the request nonce for 1308
comparison with the response message. 1309
 1310
The Core devices in the home environment may have their clocks out of 1311
synchronization. Thus the timestamp on the messages SHOULD be considered 1312
informative. 1313
 1314
The following [WS-POL] example expresses an ‘Freshness’ policy 1315

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1�
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 46 of 154

 <!-- Request Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->
 <nemop:ProtocolAssertion>
 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="request"/>
 </nemop:ProtocolAssertion>

 &client-credential;

 <!-- Nonce -->
 <nemop:Nonce
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#nonce"/>

 <!-- Message Age -->
 <wssp:MessageAge Age="3600"
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#timestamp"/>

 </wsp:Policy>

5.2.3.3 Integrity Only 1316
The following [WS-POL] example expresses an ‘Integrity Only’ policy: 1317
 <!-- Request Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->
 <nemop:ProtocolAssertion>
 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="request"/>
 </nemop:ProtocolAssertion>

 &client-credentials;

 <!-- Integrity -->
 <wssp:Integrity
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#integrity">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 wsp:Body()
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-toNode")
 </wssp:MessageParts>
 </wssp:Integrity>
 </wsp:Policy>

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 47 of 154

5.2.3.4 Integrity + Freshness 1318
The Core devices in the home environment may have their clocks out of 1319
synchronization. Thus the timestamp on the messages SHOULD be considered 1320
informative. 1321
 1322
The following [WS-POL] example expresses an ‘Integrity + Freshness’ policy 1323
 <!-- Request Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->
 <nemop:ProtocolAssertion>
 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="request"/>
 </nemop:ProtocolAssertion>

 &client-credential;

 <!-- Nonce -->
 <nemop:Nonce
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#nonce"/>

 <!-- Message Age -->
 <wssp:MessageAge Age="3600"
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#timestamp"/>

 <!-- Integrity -->
 <wssp:Integrity
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#integrity">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 wsp:Body()
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-nonce")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-timestamp")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-toNode")]
 </wssp:MessageParts>
 </wssp:Integrity>
 </wsp:Policy>

5.2.3.5 Confidentiality Only 1324
The following [WS-POL] example expresses a ‘Confidentiality Only’ policy: 1325
 <!-- Request Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->
 <nemop:ProtocolAssertion>

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 48 of 154

 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="request"/>
 </nemop:ProtocolAssertion>

 &client-credentials;

 <!-- Confidentiality -->
 <wssp:Confidentiality
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#confidentiality">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-messageKey")]
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Confidentiality>
 </wsp:Policy>

5.2.3.6 Full Security 1326
The following [WS-POL] example expresses a ‘Full Security’ policy: 1327
 <!-- Request Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->
 <nemop:ProtocolAssertion>
 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="request"/>
 </nemop:ProtocolAssertion>

 &client-credential;

 <!-- Nonce -->
 <nemop:Nonce
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#nonce"/>

 <!-- Message Age -->
 <wssp:MessageAge Age="3600"
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#timestamp"/>

 <!-- Integrity -->
 <wssp:Integrity
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#integrity">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 wsp:Body()
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 49 of 154

protocol/basic/1.0#request-messageKey")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-nonce")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-timestamp")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-toNode")]
 </wssp:MessageParts>
 </wssp:Integrity>

 <!-- Confidentiality -->
 <wssp:Confidentiality
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#confidentiality">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-messageKey")]
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Confidentiality>

 </wsp:Policy>

5.2.4 Response Policies 1328

5.2.4.1 No Security 1329
This policy does not add any protection to the message. It just leaves the message as is. 1330

5.2.4.2 Integrity Only 1331
The following [WS-POL] example expresses an ‘Integrity Only’ policy: 1332
 <!-- Response Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->
 <nemop:ProtocolAssertion>
 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="response"/>
 </nemop:ProtocolAssertion>

 <!-- Integrity -->
 <wssp:Integrity
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#integrity">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 wsp:Body()
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-toNode")]
 </wssp:MessageParts>
 </wssp:Integrity>

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 50 of 154

 </wsp:Policy>

5.2.4.3 Integrity + Freshness 1333
Core devices in the home environment may have their clocks out of synchronization. 1334
Thus the timestamp on the messages SHOULD be considered informative. 1335
 1336
The following [WS-POL] example expresses an ‘Integrity + Freshness’ policy 1337
 <!-- Response Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->
 <nemop:ProtocolAssertion>
 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="response"/>
 </nemop:ProtocolAssertion>

 <!-- Nonce -->
 <nemop:Nonce
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#nonce"/>

 <!-- Message Age -->
 <wssp:MessageAge Age="3600"
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#timestamp"/>

 <!-- Integrity -->
 <wssp:Integrity
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#integrity">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 wsp:Body()
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-nonce")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-nonce")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-timestamp")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-toNode")]
 </wssp:MessageParts>
 </wssp:Integrity>
 </wsp:Policy>

5.2.4.4 Confidentiality Only 1338
The following [WS-POL] example expresses a ‘Confidentiality Only’ policy: 1339
 <!-- Response Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 51 of 154

 <nemop:ProtocolAssertion>
 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="response"/>
 </nemop:ProtocolAssertion>

 <!-- Confidentiality -->
 <wssp:Confidentiality
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#confidentiality">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-messageKey")]
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Confidentiality>
 </wsp:Policy>

5.2.4.5 Full Security 1340
The following [WS-POL] example expresses a ‘Full Security’ policy: 1341
 <!-- Response Policy =================================== -->
 <wsp:Policy>
 <!-- Protocol -->
 <nemop:ProtocolAssertion>
 <nemop:Reference URI="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0"/>
 <nemosec:Step type="response"/>
 </nemop:ProtocolAssertion>

 <!-- Nonce -->
 <nemop:Nonce
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#nonce"/>

 <!-- Message Age -->
 <wssp:MessageAge Age="3600"
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#timestamp"/>

 <!-- Integrity -->
 <wssp:Integrity
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#integrity">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 wsp:Body()
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-messageKey")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-nonce")]

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 52 of 154

 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-nonce")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-timestamp")]
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-toNode")]
 </wssp:MessageParts>
 </wssp:Integrity>

 <!-- Confidentiality -->
 <wssp:Confidentiality
nemop:Usage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0/policyAssertion#confidentiality">
 <wssp:MessageParts Dialect="http://nemo.intertrust.com/2004/policy#part">
 nemop:Token(http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-messageKey")]
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Confidentiality>

 </wsp:Policy>

5.3 Message Faults 1342
Marlin utilizes SOAP for much of its messaging substrate. SOAP defines a mechanism 1343
to return fault indications to clients of a service. This section defines the general 1344
mechanisms by which a service can report a fault to a client of the service. 1345
 1346
There are two types of fault responses in Marlin System Protocols. One is for errors 1347
pertaining to a SOAP header processing. Another is for errors pertaining to a SOAP 1348
body processing. 1349
 1350
The schema which supports the fault mechanism is in Appendix A.7. 1351

5.3.1 Faults for SOAP Header Processing 1352
When an error occurs during the processing of the <S11:Header> element, the 1353
processor SHOULD return a fault code. In accordance with the mechanism defined in 1354
[SOAP11] the <S11:Fault> element MUST appear within the <S11:Body> element. Per 1355
this profile additional detail information MAY be returned by using the 1356
<nemoc:FaultDetails> element. 1357
 1358
The detail information MUST be supplied as attributes of a <exc:ServiceException> 1359
element or conveyed as a child element of an <exc:ServiceException> element(s). 1360
 1361
The syntax for <exc:ServiceException> element follows: 1362
exc:ServiceException 1363
A child element of the <nemoc:FaultDetails> element. 1364
 1365
exc:ServiceException/@name 1366

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 53 of 154

This attribute MUST either contain the following string identifier or a value defined in a 1367
delivery system specification: 1368

• exc:NemoMessageProcessingException: This indicates that an exception 1369
occurred while processing the SOAP header. 1370

 1371
exc:ServiceException/exc:RedirectURL 1372
The <exc:RedirectURL> element is OPTIONAL. However when present, it MUST 1373
contain a valid URL. This URL is intended to give guidance to the user to help resolve 1374
the problem. The processor of the fault message should direct the user to resolve the 1375
URL. 1376
 1377
exc:ServiceException/exc:Details 1378
 1379
The following behaviors for <exc:Details> element are defined in Marlin Core. 1380

• For 1381
exc:ServiceException/@name=”exc:NemoMessageProcessingException”: 1382
The <exc:Details> element is OPTIONAL. 1383

 1384
When several distinct errors occur during a processing of a SOAP header, multiple 1385
<exc:ServiceException> elements MAY be returned in the <nemoc:FaultDetails> 1386
element. 1387
 1388
Note: When the value of the name attribute in <exc:ServiceException> element is other 1389
than values defined in above, it MUST be defined a delivery system specification or be 1390
an organization specific URI defined for its proprietary purpose. If a client encounters an 1391
unknown value of the name attribute in <exc:ServiceException> element, the client 1392
SHOULD log the information in the <exc:RedirectURL> and <exc:Details> elements.. 1393

5.3.2 Faults for SOAP Body Processing 1394
When an error occurs during processing of the <S11:Body> element, the processor 1395
SHOULD return a fault code. In accordance with the mechanism defined in [SOAP11] 1396
the <S11:Fault> element MUST appear within the <S11:Body> element. For body 1397
faults, detail information MAY be returned using <S11:detail> element. 1398
The <exc:ServiceException> element MUST appear as a child element of the 1399
<S11:detail> element. The <exc:ServiceException> element is used to convey the actual 1400
detail information. 1401
 1402
The syntax for <exc:ServiceException> element is as follows: 1403
exc:ServiceException 1404
The child element of <S11:detail> element. 1405
 1406
exc:ServiceException/@name 1407
This attribute MUST either contain the following string identifier or a value defined in a 1408
delivery system specification: 1409

• exc:NemoMessageProcessingException: This indicates that an exception 1410
occurred while processing the SOAP body. 1411

 1412
exc:ServiceException/exc:RedirectURL 1413

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 54 of 154

The <exc:RedirectURL> element is OPTIONAL. However when present, it MUST 1414
contain a valid URL. This URL is intended to give guidance to the user to help resolve 1415
the problem. The processor of the fault message should direct the user to resolve the 1416
URL. 1417
 1418
exc:ServiceException/exc:Details 1419
The following behavior for <exc:Details> element are defined in Marlin Core. 1420

• For 1421
exc:ServiceException/@name=”exc:NemoMessageProcessingException”: 1422
The <exc:Details> element is OPTIONAL. 1423

 1424
Note: When the value of the name attribute in <exc:ServiceException> element is other 1425
than values defined in above, it MUST be defined a delivery system specification or be 1426
an organization specific URI defined for its proprietary purpose. If a client encounters an 1427
unknown value of the name attribute in <exc:ServiceException> element, the client 1428
SHOULD log the information in the <exc:RedirectURL> and <exc:Details> elements.. 1429

5.3.3 Fault Addressing 1430
When the wsdl:operation includes a soapAction attribute and wsdl:input, wsdl:output, 1431
and wsdl:fault, the specified soapActiion attribute value is used in the <wsa:Action> 1432
element for request, response, and fault messages. 1433
For example, in the following wsdl definition, the value "foo" is used for the value of the 1434
<wsa:Action> element for request, response, and fault messages: 1435
 <wsdl:binding ...> 1436
 ... 1437
 <wsdl:operation ..> 1438
 <wsdlsoap:operation soapAction="foo"/> 1439
 <wsdl:input>...</wsdl:input> 1440
 <wsdl:output>...</wsdl:output> 1441
 <wsdl:fault ...>...</wsdl:fault> 1442
 </wsdl:operation> 1443
 </wsdl:binding> 1444
 1445
When the wsdl:operation includes a soapAction attribute but does not include a 1446
<wsdl:fault> element, the default value is used in the <wsa:Action> element for fault 1447
messages. 1448
For example, in the following wsdl definition, the default value 1449
"http://www.w3.org/2005/08/addressing/soap/fault " is used as the value of the 1450
<wsa:Action> element in a fault message: 1451
 1452
 <wsdl:binding ...> 1453
 ... 1454
 <wsdl:operation ..> 1455
 <wsdlsoap:operation soapAction="foo"/> 1456
 <wsdl:input>...</wsdl:input> 1457
 <wsdl:output>...</wsdl:output> 1458
 </wsdl:operation> 1459
 </wsdl:binding> 1460
 1461
The default value is the string "http://www.w3.org/2005/08/addressing/soap/fault". 1462

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 55 of 154

5.4 Discovery 1463

5.4.1 Overview 1464
The goal of the discovery layer is to enable Marlin services to be found. 1465
 1466
This binding is based on the more general Nemo Discovery/Inspection Bindings 1467
specification ([NEMO] §6). This section further specifies discovery to ensure 1468
interoperability between two implementations of this specification. 1469
 1470
The discovery mechanism is compatible with [UPnPDevArch1.0.1] §1 and §2. When a 1471
device is added to the network, the UPnP discovery protocol allows that device to 1472
advertise essential specifics about the device or one of its services, e.g., its type, its 1473
identifier, and a reference which can be used to acquire more detailed information. 1474
 1475
Marlin Discovery leverages the UPnP discovery protocol. It compatibly extends it to 1476
advertise NEMO node specifics. When a NEMO node coexists within the context of an 1477
UPnP device, the Device Description document of an UPnP device is extended with 1478
information and end-point addresses for an UPnP Control Point (discoverer) to further 1479
inspect the NEMO node. 1480
 1481
When no UPnP device can be leveraged, the Marlin device SHALL implement an UPnP 1482
Basic Device as defined in the [UPnPBasicDev1.0.1] document. In this case, the UPnP 1483
device simply extends it with UPnP compatible NEMO node Marlin extension. 1484
 1485
Marlin devices SHALL conform to UPnP 1.0 [UPnPDevArch1.0.1] including the 1486
implementers guide errata [UPnPImplGuid]. Note that the UPnP 1.0.1 draft specification 1487
[UPnPDevArch1.0.1] is an update of UPnP 1.0 that includes all the latest errata. 1488

5.4.2 Description Extension 1489
In UPnP, after a control point has discovered a device, the control point has minimal 1490
information about the device. To obtain more device information and its capabilities, the 1491
control point retrieves the device’s description from the URL supplied in the LOCATION 1492
header of the search response. The UPnP description for a device is expressed in XML 1493
and includes a list of embedded devices and services as well as vendor specific 1494
information. 1495
 1496
The NEMO node specific information SHALL be listed as an extension to the UPnP root 1497
device description and includes URLs and parameters which are used to invoke an 1498
inspection service which implements [WS-MEX]. 1499
 1500
The description SHOULD be based on a standard UPnP Device Template. 1501
[UPnPBasicDev] specifies an extension mechanism so that vendors can differentiate 1502
their devices. The extension syntax enables extensibility by mandating devices and 1503
control points ignore all unknown elements and their sub elements or content and 1504
unknown attributes and their values. 1505
 1506
To retrieve an UPnP Description a Control point (Discoverer) issues a HTTP GET 1507
request to the URL supplied in the LOCATION header of the search response message. 1508
The device returns the device description. 1509

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 56 of 154

 1510
The following is an example of an UPnP Basic Device description with an extension 1511
defining a NEMO Node with two roles and sub-services (X_MarlinDeviceInfo): 1512
 1513
<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <URLBase>/</URLBase>
 <device>
 <deviceType>urn:schemas-upnp-org:device:Basic:1</deviceType>
 <friendlyName>Marlin Rendering Device</friendlyName>
 <manufacturer>InterTrust Technologies</manufacturer>
 <manufacturerURL>http://www.intertrust.com</manufacturerURL>
 <modelDescription>Marlin Rendering Device 1.0</modelDescription>
 <modelName>MRD</modelName>
 <modelNumber>1.0</modelNumber>
 <modelURL>http://www.intertrust.com/MRD/</modelURL>
 <serialNumber>123123123123123</serialNumber>
 <UDN>uuid:UUID</UDN>
 </device>
 <X_MarlinDeviceInfo xmlns="urn:marlin:core:1-3:schemas"
 xmlns:wsp= "xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <InspectionServiceLocation binding="urn:marlin:core:1-0:services:ws-
mex:binding:http:soap11" policyId="urn:marlin:core:1-0:services:ws-mex:policy:0">
 http://192.168.1.23:8080/ws-mex
 </InspectionServiceLocation>
 <NemoNodeInfo nodeID="urn:marlin:nemo:node:2344">
 <NemoRoleInfo roleURI="urn:marlin:core:role:drm-client">
 <PortType>proximity-check</PortType>
 <PortType>license-transfer</PortType>
 <PortType>drm-client-information</PortType>
 </NemoRoleInfo>
 <NemoRoleInfo roleURI="urn:marlin:core:role:security-data-provider">
 <PortType>provide-security-data</PortType>
 <PortType>EventSource</PortType>
 <PortType>SubscriptionManager</PortType>
 </NemoRoleInfo>
 </NemoNodeInfo>
 </X_MarlinDeviceInfo>
</root>
 1514
An UPnP Device description indicating a device that implements Marlin SHALL include a 1515
X_MarlinDeviceInfo element (see marlin-core.xsd) and SHALL contain at least the 1516
following elements: InspectionServiceLocation and NemoNodeInfo. 1517
 1518

http://schemas.xmlsoap.org/ws/2004/09/policy�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 57 of 154

The contents of X_MarlinDeviceInfo SHALL NOT contain <NemoRoleInfo> elements for 1519
services that are not yet operational. For example, a device which is functionally capable 1520
of acting fulfilling the domain information provider but has yet to be configured would not 1521
advertise this until provisioned. Once the device has been provisioned and ready to fulfill 1522
the role then it should advertise the availability of the service. 1523

5.5 Inspection 1524

5.5.1 Overview 1525
Following the discovery phase, the client, SHALL have access to the X_MarlinDeviceInfo 1526
structure which SHALL supply all the information needed to invoke the inspection 1527
service. 1528
 1529
This specification, defines static values for the protocol binding and the policyId 1530
attributes of the <InspectionServiceLocation> element: 1531
 1532
Attribute Identifier
binding urn:marlin:core:1-0:services:ws-mex:binding:http:soap11
policyId urn:marlin:core:1-0:services:ws-mex:policy:0
 1533
The URI, urn:marlin:core:1-0:services:ws-mex:policy:0, maps to “no security” (plain ws-1534
metadata exchange request/response). 1535
 1536
These parameters SHOULD be used to invoke an inspection service using [WS-MEX]. 1537
The inspection service allows the client to get more information about the discovered 1538
service. 1539

5.5.2 Inspection Client and Service interaction 1540

5.5.2.1 Supported Dialects 1541
Marlin implementation of the inspection service SHOULD support the following dialect 1542
defined in Appendix I of the [WS-MEX]: 1543

1. WSDL 1.1 1544
 1545
Additionally, the NEMO Node Info dialect as defined in [NEMO] §6 SHALL be supported. 1546
The namespace URI is: 1547

http://nemo.intertrust.com/2004/inspection/mex/nemonodeinfo 1548

5.5.2.2 GetMetadata request 1549
The GetMetadata request message SHALL conform to [WS-MEX] §3.1 with the following 1550
parameters: 1551
 1552
/s:Header/wsa:ReplyTo 1553
This field SHALL carry the endpoint of the inspection client of the requesting NEMO 1554
Node. 1555
 1556
/s:Header/wsa:To 1557
This field SHALL carry the endpoint address of the inspection service extracted from the 1558
<X_MarlinDeviceInfo> element. 1559

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 58 of 154

 1560
/s:Body/wsx:GetMetadata/wsx:Identifier 1561
This field SHALL carry the scope of the inspection request as defined below for each 1562
dialect. 1563

5.5.2.3 GetMetadata response 1564
Depending on the size of the metadata to return, the service MAY respond with a 1565
wsx:MetadataReference to the metadata. The client SHOULD follow-up this response 1566
with a second phase where it obtains the metadata. When using this option, the 1567
metadata SHALL be obtained using the HTTP-Get method [RFC2616]. 1568
 1569
The server MAY return a number of ws:Metadata Sections depending on the dialect and 1570
the wsa:To field of the request. 1571

5.5.2.3.1 WSDL 1.1 dialect 1572
wsx:Identifier What should be returned

<NEMO Node ID> All the WSDLs under the NEMO Node scope
<NEMO Node ID>::<NEMO
Role>

All the WSDLs of the services belonging to this role
under the NEMO Node scope

<NEMO Node ID>::<NEMO
Role>::<WSDL port type>

The WSDL of the service uniquely identified within
the scope of the NEMO Node and the indicated role.

5.5.2.3.2 NEMO Node Information dialect 1573
All the wsx:Identifier contain a node ID so the response SHALL always contain the 1574
NEMO Node information for the specified NEMO Node ID. 1575
 1576
This response SHALL carry all the security credentials in a <nemoc:NodeInfo> element. 1577
This includes: 1578

• The signing and encryption NEMO keys 1579
• All the asserted Role attributes for this NEMO Node 1580
• The asserted Specification Version attributes as defined in Section 8.2. 1581

 1582
The credentials delivered in the <nemoc:NodeInfo> element MUST adhere to the 1583
following: 1584

1. The <wsse:SecruityTokenReference> elements SHALL signal the credential 1585
usage with a nemosec:TargetUsage attribute. The nemosec:Usage attribute 1586
SHALL NOT be present. 1587

2. The credentials and values for the nemosec:TargetUsage attribute are as 1588
follows: 1589
• Signing key for response messages SHALL be signaled with: 1590

http://nemo.intertrust.com/2005/10/security/secure-1591
protocol/basic/1.0#response-signingKey 1592
 1593
The <wsse:SecurityTokenReference> element SHALL contain an 1594
<wsse:Embeded> element. The <wsse:Embedded> element SHALL include 1595
a <wsse:BinarySecurityToken>. The <wsse:BinarySecurityToken> element 1596
SHALL include a ValueType attribute with the value: 1597
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-1598

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 59 of 154

profile-1.0#X509PKIPathv1 1599
 1600

• Encryption key for request messages SHALL be signaled with: 1601
http://nemo.intertrust.com/2005/10/security/secure-1602
protocol/basic/1.0#request-encryptionKey 1603
 1604
The <wsse:SecurityTokenReference> element SHALL contain an 1605
<wsse:Embeded> element. The <wsse:Embedded> element SHALL include 1606
a <wsse:BinarySecurityToken>. The <wsse:BinarySecurityToken> element 1607
SHALL include a ValueType attribute with the value: 1608
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-1609
profile-1.0#X509PKIPathv1 1610
 1611

• SAML Assertion with role attributes SHALL be signaled with: 1612
http://nemo.intertrust.com/2004/attribute/role 1613
 1614
The <wsse:SecurityTokenReference> element SHALL contain an 1615
<wsse:Embeded> element. The <wsse:Embedded> element SHALL include 1616
a <saml:Assertion> element (with role attributes.) 1617

3. When one key is used for both signing response messages and encrypting 1618
request messages then there SHALL be two <wsse:SecurityTokenReference> 1619
elements, one indicating the response signing target usage and the other 1620
indicating the request encryption target usage. In other words, these two 1621
<wsse:SecurityTokenReference> elements include the same X.509 key with 1622
different target usages. Example 5-1 demonstrates this. 1623

 1624
<nemoc:NodeInfo>
 <nemoc:NodeId>urn:marlin:nemo:node:2344</nemoc:NodeId>
 <!-- DRM Client's Encryption Key -->
 <wsse:SecurityTokenReference
 nemosec:TargetUsage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#request-encryptionKey">
 <wsse:Embedded>
 <wsse:BinarySecurityToken wsu:Id="PKIPath0"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-
token-profile-1.0#X509PKIPathv1"
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#Base64Binary">
 MIAwggM0MIICHKADAgECAgFlMA0GCSqGSIb3DQEBBQUAMCExHzA...
 </wsse:BinarySecurityToken>
 </wsse:Embedded>
 </wsse:SecurityTokenReference>
 <!-- DRM Client's Signing Key -->
 <wsse:SecurityTokenReference
 nemosec:TargetUsage="http://nemo.intertrust.com/2005/10/security/secure-
protocol/basic/1.0#response-signingKey">
 <wsse:Embedded>
 <wsse:BinarySecurityToken wsu:Id="PKIPath1"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-
token-profile-1.0#X509PKIPathv1"

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 60 of 154

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#Base64Binary">
 MIAwggM0MIICHKADAgECAgFlMA0GCSqGSIb3DQEBBQUAMCExHzA...
 </wsse:BinarySecurityToken>
 </wsse:Embedded>
 </wsse:SecurityTokenReference>
 ...
</nemoc:NodeInfo>
Example 5-1: NodeInfo indicating the same key is used for signing and encryption. 1625

1626

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 61 of 154

5.6 Subscription and Notification 1627

5.6.1 Overview 1628
Simple interaction such as request/response with web services is not enough and not 1629
very dynamic. There are some cases where a client wants to subscribe to an event such 1630
as “new security data available” and be notified when this event occurs. The solution we 1631
propose here is based on, and compatible with [WS-BASENOTE]. This is illustrated 1632
below: 1633

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 62 of 154

 1634
Figure 5-2 Subscription-based Notification Overview 1635

 1636
In the first of the following sections, we explain how to subscribe to a topic and how to 1637
filter the data the client wants to receive notifications for. 1638

Event-driven Invocation

Direct Invocation

DRM Client DRM Object
Provider

Subscribe Request

Provide DRM Objects Req

Provide DRM Objects Rsp

DRM Objects consumed
Confirmation

Subscribe Response

Notification

Unsubscribe

Renew Subscription Req
Renew Subscription Rsp

Provide DRM Objects Req

Provide DRM Objects Rsp

DRM Objects consumed
Confirmation

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 63 of 154

5.6.2 Topics 1639
In order to scope notification subscriptions, all subscription services MUST support the 1640
Simple Topic Expression Dialect specified in [WS-TOPICS] §7.1.This dialect is identified 1641
by the following URI: 1642
 http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple 1643
 1644
This enables a subscriber to choose specific topics for notifications. Optionally, 1645
additional restrictions can be specified by qualifying the subscription with an expression 1646
which describes a particular system entity (e.g., Octopus Personality Node or Nemo 1647
Node.) 1648

5.6.2.1 Provide Security Data Topics 1649
This topic enables a subscriber to receive notifications for security metadata updates. 1650
The scope of the subscription MAY be narrowed by the root topic identifiers specified in 1651
the following table. 1652
Topic Namespace Identifier Root Topics Semantic
urn:marlin:core:1-0:subscription:topic security-data Any security metadata

crl Newest CRL4

broadcastkeyblock

Newest BKB4
assertion SAML Assertions
trustedtime Trusted Time

Table 5-3 Provide Security Data Root Topic Namespaces 1653

The subscriber MUST specify the scope of the subscription by qualifying the 1654
<wsnt:TopicExpression> element with one of the root topics defined in Table 5-3. 1655
 1656
Device implementations are REQUIRED to subscribe to the “crl” topic from an available 1657
SDP. Implementations with Internet connectivity are REQUIRED to resolve the CRL 1658
distribution point URI. 1659
 1660
Device implementations that issues licenses are REQUIRED to subscribe to the 1661
“broadcastkeyblock” topic. Implementations with Internet connectivity are 1662
RECOMMENDED to acquire the BKB by resolving the distribution attributes in the BKB. 1663
 1664
The following is an example of a request to subscribe to the “crl” root topic: 1665
 1666
<wsnt:Subscribe> 1667
 <wsnt:ConsumerReference> 1668
 <wsa:Address>...</wsa:Address> 1669
 <wsa:Metadata xsi:type=”mc:NemoNodeInfo”> 1670
 <mc:NemoNodeInfo nodeID=”urn:marlin:nemo:node:2344”/> 1671
 </wsa:Metadata> 1672
 </wsnt:ConsumerReference> 1673
 <wsnt:Filter> 1674
 <wsnt:TopicExpression 1675
 Dialect=” http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple” 1676

4 Certificate Revocation Lists and Broadcast Key Blocks are large data objects which update
infrequently. The notification messages for these root topics include specific information to aid the
Notification Consumer in determining whether the data object is more current than the object
possessed by the Notification Consumer. See Section 5.6.3.1.1.

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 64 of 154

 xmlns:tns=”urn:marlin:core:1-0:subscription:topic”> 1677
 tns:crl 1678
 </wsnt:TopicExpression> 1679

</wsnt:Filter> 1680
</wsnt:Subscribe> 1681
 1682
The subscription request MAY be further qualified in the filter by including a 1683
<mc:SecurityMetadataTopicExpression> and including the <mc:NemoNodeId> element. 1684
In the absence of this element the subscription service SHOULD limit the information 1685
published to that which is safe to broadcast to all subscribers. Otherwise the subscription 1686
service must limit the distribution to the NEMO Node ID specified in the <wsa:Metadata> 1687
element within the <wsnt:ConsumerReference>. 1688

5.6.2.2 Provide DRM Objects Topic 1689
This topic enables a subscriber to receive notifications for Octopus DRM Objects. The 1690
supported root topic identifiers are specified in the following table. 1691
 1692
Topic Namespace Identifier Root Topics Semantic
urn:marlin:core:1-0:subscription:topic drm-objects DRM Objects for the

indicated Octopus
personality

Table 5-4 Provide DRM Objects Root Topic Namespaces 1693

The subscriber MUST specify the scope of the subscription by qualifying the 1694
<wsnt:TopicExpression> element with one of the root topics defined in Table 5-4. 1695
The following is an example of a request to subscribe to the “drm-objects” root topic: 1696
 1697
<wsnt:Subscribe> 1698
 <wsnt:ConsumerReference> 1699
 <wsa:Address>...</wsa:Address> 1700
 <wsa:Metadata xsi:type=”mc:NemoNodeInfo”> 1701
 <mc:NemoNodeInfo nodeID=”urn:marlin:nemo:node:2344”/> 1702
 </wsa:Metadata> 1703
 </wsnt:ConsumerReference> 1704
 <wsnt:Filter> 1705
 <wsnt:TopicExpression 1706
 Dialect=” http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple” 1707
 xmlns:tns=” urn:marlin:core:1-0:subscription:topic”> 1708
 tns:drm-objects 1709

 </wsnt:TopicExpression> 1710
 <mc:DRMObjectsTopicExpression> 1711
 <mc:OctopusNodeID>…</mc:OctopusNodeID> 1712
 </mc:DRMObjectsTopicExpression> 1713

 </wsnt:Filter> 1714
</wsnt:Subscribe> 1715
 1716
The subscription request SHOULD further qualify the filter by including a 1717
<mc:DRMObjectsTopicExpression> which designates the Octopus Personality Node of 1718
interest in the <mc:OctopusNodeId> element. (Informative Note: This identifier is 1719
derived from the oct:uid attribute of the <oct:Node> when the Octopus personality node 1720
is encoded in XML.) In the absence of the <mc:DRMObjectsTopicExpression> element 1721
the subscription service may utilize the inspection services of the NEMO Node described 1722

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 65 of 154

in the <wsa:Metadata> element within the <wsnt:ConsumerReference> in order to 1723
determine the Octopus node(s). 1724

5.6.3 Notification Consumer 1725
Notification Consumers SHALL implement the Notification Consumer interface as 1726
specified in [WS-BASENOTE] §3. 1727

5.6.3.1 Notify 1728
This message exchange MUST be implemented as specified in [WS-BASENOTE] §3. 1729
Notification consumers MUST understand Notify messages as specified in [WS-1730
BASENOTE] §3.2. 1731
 1732
The payload of the <wsnt:Notify> message is carried within a <wsnt:Message> element. 1733
It is RECOMMENDED that the payload carry a <mc:NotificationID> element. The value 1734
of this element is opaque to the Notification Consumer and serves as a simple identifier 1735
which the subscription resource may utilize to locate the specific data being published. 1736

5.6.3.1.1 Qualified Notification Message 1737
The <wsnt:Notify> generally carries sufficient context for the Notification Consumer to 1738
obtain the published data. However, the root topics “crl” and “broadcastkeyblock” defined 1739
in Section 5.6.2.1 supply updates to critical security metadata which change infrequently. 1740
 1741
To avoid excessive consumption of bandwidth retrieving a large data object which is 1742
already known to the Notification Consumer a Notification Producer SHOULD insert 1743
information in the payload of the <wsnt:NotificationMessage> to identify the instance of 1744
these data objects. 1745
 1746
For a CRL the payload should bear a <mc:CRLNumber> element. The value of this 1747
element is the integer value of the id-ce-cRLNumber extension field of a CRL as defined 1748
in [PKIX] §5.2.3. The following example depicts a notify message for a CRL. 1749
 1750
<wsnt:Notify> 1751
 <wsnt:NotificationMessage> 1752
 <wsnt:SubscriptionReference> 1753
 <wsa:Address>...</wsa:Address> 1754
 </wsnt:SubscriptionReference> 1755
 <wsnt:Topic 1756
 Dialect=” http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple” 1757
 xmlns:tns=”urn:marlin:core:1-0:subscription:topic”> 1758
 tns:crl 1759
 </wsnt:Topic> 1760
 <wsnt:ProducerReference> 1761
 <wsa:Address>...</wsa:Address> 1762
 </wsnt:ProducerReference> 1763
 <wsnt:Message> 1764
 <mc:NotificationID>…</mc:NotificationID> 1765
 <mc:CRLNumber>9</mc:CRLNumber> 1766
 </wsnt:Message> 1767
 <wsnt:NotificationMessage> 1768
<wsnt:Notify> 1769
 1770

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 66 of 154

For a Broadcast Key Block the payload SHOULD include a 1771
<mc:BKBRevocationVersion> element. The value of this element is the same as the 1772
sf:revocationVersion attribute defined in the [Starfish] schema. 1773

5.6.4 Notification Producer 1774
Marlin Notification producers MUST implement the Notification Producer interface as 1775
specified in [WS-BASENOTE] §4. Each Notification Producer endpoint MUST have a 1776
unique URI. 1777
 1778
The following sections define the message exchanges utilized by Marlin entities to 1779
leverage a Notification Producer interface. 1780

5.6.4.1 Subscribe 1781
This message exchange MUST be implemented as specified in [WS-BASENOTE] §4.2. 1782
In addition to the above requirement the following components MUST be included in a 1783
subscription request message. 1784
 1785
The mandatory <wsnt:ConsumerReference> element MUST indicate the NEMO Node 1786
ID of the notification consumer within a <wsa:Metadata> element. This MUST be 1787
accomplished by inserting a <mc:NemoNodeInfo> element as a child of the 1788
<wsa:Metadata> element. This element only need to supply the mc:nodeID attribute. 1789
Instance of a <wsa:Metadata> element indicating the NEMO Node ID information 1790
SHALL assert its element type by specifying the xsi:type attribute with a value of 1791
“mc:NemoNodeInfo” string identifier. 1792
 1793
The subscription request MUST include a <wsnt:Filter> element. This element MUST 1794
carry a <wsnt:TopicExpression> element. The <wsnt:TopicExpression> element MUST 1795
specify the simple dialect attribute. The root topics supported by this specification are 1796
described in Section 5.6.2.1 and Section 5.6.2.2. 1797

5.6.5 Subscription Manager Operations 1798
Subscription management in Marlin MUST implement the Base Subscription Manager 1799
interface as specified in [WS-BASENOTE] §6 and §6.1. 1800
 1801
The web services representing individual subscription resources SHALL reside at the 1802
same location as the Notification Producer service. That is, individual subscriptions 1803
SHALL be represented by endpoint references composed of the information matching 1804
the endpoint reference of the subscription manager service. The [WS-Addr] 1805
<wsa:Action> message address property helps to disambiguate the service consumer 1806
intentions. 1807
 1808
The following sections define the interfaces that MUST be exposed by a Marlin 1809
Subscription Manager service. 1810

5.6.5.1 Renew 1811
This message exchange MUST be implemented as specified in [WS-BASENOTE] §6.1.1 1812
 1813

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 67 of 154

5.6.5.2 Unsubscribe 1814
This message exchange MUST be implemented as specified in [WS-BASENOTE] 1815
§6.1.2. 1816

5.6.6 Faults 1817
The SOAP faults used in context of the notification framework comply with the 1818
specifications of the respective message exchanges. As such, they extend 1819
<wsnt:BaseFault> as specified in [WSRF-BF] and have the <wsa:Action> URI: 1820
 http://docs.oasis-open.org/wsrf/fault 1821

5.7 Service-specific Protocols 1822

5.7.1 Proximity Check Protocol (HARPOON) 1823

5.7.1.1 Overview 1824
The proximity check SHALL allow an anchor (client) to check the proximity of a target 1825
(service). 1826
 1827
This protocol is asymmetric as the anchor (client) generates a secret seed and is the 1828
only one that requires a secure timer. Moreover, the target (service) does not need to 1829
trust the anchor (client). It is also cryptographically efficient requiring only two public key 1830
operations. 1831
 1832
The XML schema for this protocol is defined in the XML Namespace 1833

 1834
urn:marlin:core:1-1:nemo:services:schemas 1835

 1836
A copy of the XML schema and WSDL is in Appendix A.1 and B.1, respectively. 1837

5.7.1.2 Generation of the set R of Q pairs from a Seed S 1838
The set R is obtained from randomly generated seed using the following method: 1839
Ri = H2Q-i(S) 1840
 1841
H(M) is the digest value of the hash function H over the message M. 1842
Hn(M) = H(Hn-1(M)) for n>=1 and H0(M) = M 1843
 1844
The algorithm used for the hash function H() SHALL be [SHA1]. 1845

5.7.1.3 Sequence 1846

a) A generates a set R of Q pairs of random numbers {R0, R1}, {R2, R3}… {R2Q-2, 1847
R2Q-1}. 1848

b) A sends to B: E(PubB, {Q,S}). 1849

c) B decrypts {Q,S} and precomputes R according to Section 5.7.1.2 1850

d) B sends back an acknowledgement to indicate that it is ready to proceed 1851

e) A sets the loop counter i=0 1852

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 68 of 154

f) A measures T0 = now 1853

g) A sends to B: {i, R2*i} 1854

h) If the value of R2*I is correct, B responds with R2*i+1 1855

i) A measures D = now-T0 1856

j) If B is responded to with the correct value for R2*i+1, and D < Threshold: success, 1857
stop. 1858

k) If i+1 < Q, A can retry a new measurement by incrementing i and going to step f) 1859
If it is needed to perform more than Q measurements, A needs to start from step a) with 1860
a new set R. 1861

 1862

5.7.1.4 Security Considerations5

When engaging in this protocol, care must be taken to follow some basic requirements: 1864
 1863

• The loop f-i MUST NOT be repeated with the same value of i for any set R 1865

• The protocol MUST be aborted if any unexpected message is received by either 1866
party. That includes: 1867

o If B receives an incorrect value for R2*i in step g. 1868

o If Q is not within a specified range in step a 1869

o If i is repeated in the loop 1870

5 It is the purview of a compliance regime to define the values for Q and Threshold. Therefore,
implementations should be flexible in configuring these values. Also it is assumed that
implementation should support a minimum value of 64 for Q and 8ms for the Threshold.

A B
Setup Request E(PubB, {Q, S}

Setup Response

Challenge Request {I, R2*i}

Challenge Response R2*i+1

R
TT M

easurem
ent

Loop

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 69 of 154

o If i exceeds Q 1871

5.7.1.5 Messages 1872

5.7.1.5.1 Setup Request 1873
• E(PubB, {Q, S}): The number of pairs Q as well as the secret pairs seed S 1874

encrypted with B’s NEMO public encryption key 1875
 1876
{Q, S} is the byte stream concatenation of Q (1 byte) and S (16 bytes) in network byte 1877
order. 1878
 1879
The encryption is performed with [RSA-1_5]. PubB has been previously accessed 1880
through inspection and its certificate MUST have been verified. 1881

5.7.1.5.2 Setup Response 1882
None 1883

5.7.1.5.3 Challenge Request 1884
• [i, R2*i]: The index i and the corresponding secret computed from the seed. 1885

 1886
[i, R2*i] is the byte stream concatenation of i (1 byte) and R2*i (20 bytes) in network byte 1887
order, encoded in base64 for transport. 1888
 1889

5.7.1.5.4 Challenge Response 1890
• R2*i+1: the corresponding secret from the Challenge Request 1891

 1892
R2*i+1 is the byte stream of R2*i+1 (20 bytes) in network byte order, encoded in base64 for 1893
transport. 1894

5.7.1.6 Protocol Security Policies 1895
‘No Security’ policy is needed for this protocol. The identifier for this policy is: 1896
urn:marlin:core:1.0:nemo:services:proximity-check:policy:0
 1897

5.7.2 DRM Client Information 1898

5.7.2.1 Overview 1899
This service can be used to get metadata on the DRM client (second level of inspection). 1900
This service includes four operations: 1901

• get the Octopus Node of the DRM Client 1902
• get the current Security Metadata of the client so that a decision can be made by 1903

a Security Data Provider to update it or not. 1904
• get the active Octopus links of a DRM Client 1905
• get the secret scuba sharing key of a client 1906

 1907
The XML schema for this protocol is defined in the XML Namespace 1908

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 70 of 154

 1909
urn:marlin:core:1-1:nemo:services:schemas 1910

 1911
A copy of the XML schema and WSDL is in Appendix A.2 and B.2, respectively. 1912
 1913

5.7.2.2 Get Octopus Node 1914

5.7.2.2.1 Request Parameters 1915
None 1916

5.7.2.2.2 Response Data 1917
• Octopus Bundle: the data structure containing the public Octopus Personality 1918

Node representing the DRM Client 1919

5.7.2.2.3 Protocol Security Policies 1920
The response must be signed by the NEMO authentication key of the DRM Client. This 1921
creates a secure binding between the NEMO Node ID of the DRM Client and the 1922
Octopus Node it hosts. 1923
 1924
The request SHOULD obey ‘No Security’ policy (Section 5.2.3.1) and the response 1925
MUST obey the ‘Integrity Only’ policy (Section 5.2.4.2.) 1926
 1927
The identifier for this policy is: 1928
urn:marlin:core:1.0:nemo:services:drm-client-information:get-octopus-node:policy:0
 1929

5.7.2.3 Get Security Metadata 1930

5.7.2.3.1 Request Parameters 1931
None 1932

5.7.2.3.2 Response Data 1933
• Security Metadata: The opaque data structure representing the current security 1934

metadata of the DRM Client 1935

5.7.2.3.3 Protocol Security Policies 1936
The response must be signed by the NEMO authentication key of the DRM Client. This 1937
allows for the authenticity of the security metadata to be verified. 1938
 1939
Because the response requires freshness the request SHOULD obey the ‘Freshness’ 1940
only policy (Section 5.2.3.2) and the response MUST obey the ‘Integrity+Freshness’ 1941
policy (Section 5.2.4.3.) 1942
 1943
The identifier for this policy is: 1944
urn:marlin:core:1-2:nemo:services:drm-client-information:get-security-metadata:policy:0

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 71 of 154

5.7.2.4 Get Domain Links 1945

5.7.2.4.1 Request Parameters 1946
• domain-policy: This OPTIONAL element specifies the URI used to identify the 1947

domain policy. 1948
 1949

5.7.2.4.2 Response Data 1950
• Bundle: structure carrying the current valid Octopus Links of the DRM Client 1951

5.7.2.4.3 Protocol Security Policies 1952
The response must be signed by the NEMO authentication key of the DRM Client. This 1953
allows for the authenticity of the links validity to be verified. 1954
 1955
Because the response requires freshness the request SHOULD obey the ‘Freshness’ 1956
only policy (Section 5.2.3.2) and the response MUST obey the ‘Integrity+Freshness’ 1957
policy (Section 5.2.4.3.) 1958
 1959
The identifier for this policy is: 1960
urn:marlin:core:1-2:nemo:services:drm-client-information:get-domain-links:policy:0

5.7.2.5 Get Scuba Secret Sharing Key 1961

5.7.2.5.1 Request Parameters 1962
None 1963

5.7.2.5.2 Response Data 1964
• Key Data: structure carrying the base 64 encoded plain Scuba Sharing key of the 1965

DRM Client. 1966

5.7.2.5.3 Protocol Security Policies 1967
The request must be signed and the DRM Object Provider role of the requesting NEMO 1968
Node MUST be attached to the request. 1969
 1970
The response must be signed by the NEMO authentication key and encrypted by the 1971
requestor’s public key. This enables the recipient to verify the authenticity of the links 1972
validity and protects the confidentiality of the Scuba Secret Sharing key. It is OPTIONAL 1973
for a client to distribute its Scuba Secret Sharing key. 1974
 1975
The request MUST obey the ‘Integrity+Freshness’ policy (Section 5.2.3.4) and the 1976
response MUST obey the response ‘Full Security’ policy (Section 5.2.3.5.) 1977
 1978
The identifier for this policy is: 1979
urn:marlin:core:1.0:nemo:services:drm-client-information:get-scuba-sharing-key:policy:0

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 72 of 154

5.7.3 Provide Domain Information 1980

5.7.3.1 Overview 1981
This service can be used to get metadata regarding the Domains that the Domain 1982
Information Provider has access to. 1983
The XML schema for this protocol is defined in the XML Namespace: 1984

 1985
urn:marlin:core:1-1:nemo:services:schemas 1986

 1987
A copy of the XML schema and WSDL is in Appendix A.3 and B.3, respectively. 1988

5.7.3.2 Request Parameters 1989
None 1990

5.7.3.3 Response Data 1991
• Domain Info (one or more): Data structure encoding the ID of the Octopus Node 1992

representing the domain as well as the policy type for this domain and the 1993
Provide DRM Objects service endpoint that can be invoked to request a 1994
registration. 1995

• Domain Policy (one or more): the data structure encoding the policy referred to in 1996
the Domain Info structure. This structure SHALL be used for User Interface 1997
purposes only. 1998

5.7.3.4 Protocol Security Policies 1999
The response must be signed by the NEMO Authentication key of the Domain Manager. 2000
This allows for the authenticity of the Domain Manager Information to be verified. 2001
 2002
The request SHOULD obey the ‘No Security’ policy (Section 5.2.3.1) and the response 2003
MUST obey the ‘Integrity Only’ policy (Section 5.2.3.2.) 2004
 2005
The identifier for this policy is: 2006
urn:marlin:core:1.0:nemo:services:provide-domain-information:policy:0

5.7.4 Provide DRM Objects 2007

5.7.4.1 Overview 2008
This is a simple REQUEST/RESPONSE protocol. However, the exchange anticipates 2009
the response to bear an Agent. Agents are obligated to supply a confirmation. 2010
Confirming to the DRM Object providing service allows the service to determine that the 2011
object has been processed in a secure environment. 2012
 2013
The XML schema for this protocol is defined in the XML Namespace 2014

 2015
urn:marlin:core:1-1:nemo:services:schemas 2016

 2017
A copy of the XML schema and WSDL is in Appendix A.4 and B.4, respectively. 2018

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 73 of 154

5.7.4.2 Request parameters 2019
• Octopus Personality Node: The Octopus Node representing the DRM Client. 2020
• Notification ID: This OPTIONAL element is present if the request is sent after the 2021

DRM Client has been notified (event driven invocation), then this parameter 2022
MUST be present so that the service can correlate it with the notification it sent to 2023
the DRM Client. 2024

• DRMObjectContext: This OPTIONAL element supplies the data structure that 2025
encodes the action context of the provisioning of this Octopus Object. It will 2026
indicate the action, if any, intended by the requester (i.e. registration or 2027
deregistration). 2028

 2029
An example of a DRMObjectContext follows: 2030
<mncs:DRMObjectContext>
 <mncs:DRMAction
name="urn:marlin:core:1.0:nemo:services:provide-drm-
objects:context:action:registration"/>
 <ml:ContextList>
 <ml:Context uid="urn:marlin:broadcast:1-0:domain:243523"/>
 </ml:ContextList>
</mncs:DRMObjectContext>

 2031
Therefore, when the service receives a Provide DRM Object request with this 2032
data structure, it should try to register the client with the domain 2033
urn:marlin:broadcast:1-0:domain:243523 2034

 2035
The mncs:name attribute of the <mncs:DRMAction> element may have one of the 2036
following values: 2037
urn:marlin:core:1.0:nemo:services:provide-drm-objects:context:action:registration
urn:marlin:core:1.0:nemo:services:provide-drm-objects:context:action:deregistration

5.7.4.3 Response Data 2038
• Octopus Bundle: This OPTIONAL element supplies the data structure containing 2039

the Octopus objects. This bundle SHALL NOT bear Agents. 2040
• Agent Carrier: This OPTIONAL element supplies the data structure containing 2041

the Agent as well as the input parameters and the context ID. The name and 2042
controlID attributes MUST be specified to unambiguously identify the Agent. 2043

• DRMObjectContext: This OPTIONAL element supplies the data structure that 2044
encodes the action context for provisioning of the Octopus Object. This data 2045
structure also carries the context identifiers that the application SHOULD use in 2046
order to do the necessary cleanup. This element SHALL be present when the 2047
action context is related to domain registration or de-registration. 2048
 2049
An example of a DRMObjectContext follows: 2050
<mncs:DRMObjectContext>
 <mncs:DRMAction
name="urn:marlin:core:1.0:nemo:services:provide-drm-
objects:context:action:deregistration"/>
 <ml:ContextList>
 <ml:Context uid="urn:marlin:broadcast:1-0:domain:243523"/>

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 74 of 154

 </ml:ContextList>
</mncs:DRMObjectContext>

Therefore, when the client receives Provide DRM Object response with this data 2051
structure, it should cleanup all the Octopus links that have a domain-id attribute 2052
equal to "urn:marlin:broadcast:1-0:domain:243523". 2053

5.7.4.4 Confirmation parameters 2054
A confirmation MUST be sent. This is necessary regardless of whether the response 2055
contains an Agent Carrier or not. By making the confirmation mandatory we ensure that 2056
the communicating entities can be prepared for a multi-round message exchange 2057
pattern. 2058
 2059
The DRM Client may also refuse the objects provided by the service. In this case, it will 2060
send a DRM Object Refusal in the confirmation. 2061

• DRMObjectRefusal: This OPTIONAL element contains the DRMObjectContext 2062
that was sent in the response. 2063

• Agent Result Block: This OPTIONAL element represents the data resulting from 2064
processing the Agent. 2065

5.7.4.5 Notification 2066
If a DRM Client has subscribed to the topic space defined in Section 5.6.2.2, the Provide 2067
DRM Objects service (event source) notifies the DRM Client when it has new DRM 2068
Objects for it. The payload of the notification SHALL be: 2069

• Notification ID: The ID of the notification 2070
 2071
The notification signals to the DRM Client that it MUST contact the Provide DRM Objects 2072
service to get the object(s). 2073

5.7.4.6 Protocol Security Policies 2074
The request and confirmation MUST obey the ‘Integrity+Freshness’ policy (Section 2075
5.2.3.4) and the response MUST obey the ‘Integrity+Freshness’ policy (Section 5.2.4.3.) 2076
 2077
Moreover, in order to correlate the request with the confirmation messages, the 2078
Message Correlation pattern described in [NEMO] §2.3 MUST be used. The specific 2079
information in the SOAP header guarantying the correlation MUST be covered by the 2080
message signature. 2081
 2082
The identifier for this policy is: 2083
urn:marlin:core:1.0:nemo:services:provide-drm-objects:obtain-objects:policy:0
 2084

5.7.5 Provide Security Data 2085

5.7.5.1 Overview 2086
This is a simple REQUEST/RESPONSE protocol. 2087
 2088
The XML schema for this protocol is defined in the XML Namespace 2089

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 75 of 154

 2090
urn:marlin:core:1-1:nemo:services:schemas 2091

 2092
A copy of the XML schema and WSDL is in Appendix A.5 and B.5, respectively. 2093
 2094

5.7.5.2 Request parameters 2095
• Security Metadata: The security metadata possessed by the Device which the 2096

Service may inspect for currency. 2097
• Notification ID: This OPTIONAL element is present if the request is sent after the 2098

Device has been notified (event driven invocation), then this parameter MUST be 2099
present so that the service can correlate it with the notification it sent to the 2100
Device. 2101

5.7.5.3 Response Data 2102
• Security Metadata: The data to be processed by the Device 2103

 2104

5.7.5.4 Notification 2105
If a Device has subscribed to the topic space defined in Section 5.6.2.1, the Provide 2106
Security Data service (event source) notifies the Device when it has new Security Data 2107
for it. The payload of the notification SHALL be: 2108

• Notification ID: The ID of the notification 2109
 2110
The notification signals to the Device that it MUST contact the Provide Security Data 2111
service to get the update. 2112

5.7.5.5 Protocol Security Policies 2113
Because the response requires freshness the request SHOULD obey the ‘Freshness’ 2114
only policy (Section 5.2.3.2) and the response MUST obey the ‘Integrity+Freshness’ 2115
policy (Section 5.2.4.3.) 2116
 2117
The identifier for this policy is: 2118
urn:marlin:core:1-2:nemo:services:security-data:obtain-data:policy:0

5.7.6 License Transfer 2119

5.7.6.1 Overview 2120
In order to ensure consistent behaviour among implementations some of the service 2121
interactions must uphold usage rules. For the License Transfer service the usage rule is 2122
defined in Section 11. This protocol specifies the service interaction used to support this 2123
usage rule. 2124
 2125
The XML schema for this protocol is defined in the XML Namespace 2126

 2127
urn:marlin:core:1-1:nemo:services:schemas 2128

 2129
A copy of the XML schema and WSDL is in Appendix A.6 and B.6, respectively. 2130

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 76 of 154

 2131
The figure below indicates the message flow for this protocol. 2132

 2133
 2134

5.7.6.2 Setup Message Parameters 2135
• License: Data structure that carries the license to be transfered. 2136
• Operation: The type of transfer operation. 2137
• Octopus Bundle: the data structure containing the public Octopus Personality 2138

Node representing the DRM Client. 2139
• SessionId: OPTIONAL element. It SHALL NOT be present except if the operation 2140

is urn:marlin:core:1-3:service:license-transfer:release in which case it MAY be 2141
present if a SessionId parameter was received in the Extended Status Block fo 2142
the corresponding render or checkout action. 2143

• RequireContentKeys: OPTIONAL element. It SHOULD be present with a value of 2144
false if the sink knows that it is already capable of decrypting the content keys. 2145
The absence of this element means that the Source has to re-encrypt the 2146
Content Keys of the sink in case of success of the protocol. 2147

 2148
The types of operation are defined in the following table: 2149
urn:marlin:core:1-0:service:license-transfer:move
urn:marlin:core:1-0:service:license-transfer:copy
urn:marlin:core:1-0:service:license-transfer:render
urn:marlin:core:1-0:service:license-transfer:checkout
urn:marlin:core:1-3:service:license-transfer:release
In the case of streaming, the identifier 2150

Source Sink

Setup

AgentResult

RunAgent

Teardown

Can have
0+ of these

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 77 of 154

urn:marlin:core:1-0:service:license-transfer:render 2151
is used ([8pus] §3). 2152
 2153
When the Setup Message is received, the Source SHALL do the following: 2154

1. Collect all the contentId attributes found in the LicensePart elements (see XML 2155
schema). 2156

o When a contentId attribute in a LicensePart element is omitted, all of the 2157
contentId(s) in Bundle element (LicensePart/Bundle) are target for LTP 2158
transaction. 2159

o When a contentId attribute in a LicensePart element is specified, the 2160
corresponding contentId in Bundle element (LicensePart/Bundle) is a 2161
target for LTP transaction. 2162

2. Process all the Bundle elements found in the LicensePart elements 2163
3. Open the set of content IDs collected above 2164
4. Verify the appropriate signatures on the relevant objects 2165
5. Populate the relevant context for the Control.Actions.Transfer method 2166
6. Optionally invoke the Control.Actions.Transfer.Check method on the processed 2167

Control object. 2168
7. Invoke the Control.Actions.Transfer.Perform on the process Control object. 2169
8. Read the Extended Status Block (ESB) returned by the 2170

Control.Actions.Transfer.Perform entry point. 2171
o If this ESB contains a RunAgentOnPeer obligation / OnAgentCompletion 2172

callback (see [8pus] §3), the RunAgentOnPeer obligation SHALL contain 2173
all the parameters that the Source application needs in order to build the 2174
RunAgent message. Note that this message will also be sent if the 2175
application encounters another RunAgentOnPeer/OnAgentCompletion 2176
callback/obligation pair in the Extended Status Block of the 2177
OnAgentCompletion callback (after one or more RunAgent/AgentResult 2178
message exchange). 2179

o If this ESB does not contain a RunAgentOnPeer obligation / 2180
OnAgentCompletion callback, it means that the Teardown message (see 2181
section 3.4) MUST be sent. Note that this ESB MAY contain a 2182
ProximityCheck obligation / OnSinkProximityChecked callback in which 2183
case the harpoon protocol SHALL be performed and the result will be 2184
read from the ESB of the OnSinkProximity checked callback before 2185
sending the Teardown message. 2186

5.7.6.3 RunAgent Message Parameters 2187
• Agent Carrier: The data structure containing the Agent as well as the input 2188

parameters and the context ID. The name and controlID attributes MUST be 2189
specified to unambiguously identify the Agent. 2190

 2191
When the Sink receives the agent it MUST run it as specified in section 3.2.8 of the 2192
[8pus] specifications. 2193

5.7.6.4 AgentResult Message Parameters 2194
• Agent Result Block: The data resulting from the processing of the Agent. 2195

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 78 of 154

5.7.6.5 Teardown Message Parameters 2196
• Extended Status Block: This is the ESB of the last invocation of the Control that 2197

contains no agent related obligation / callback pair. It contains the protocol result 2198
so that the sink knows if the protocol has succeeded or not. In case of failure, this 2199
ESB MAY point to resources located in the ResourceList extension of the Control 2200
that was sent in the Setup message. 2201

• Content Key List: OPTIONAL element. If the protocol is not successful as 2202
indicated by the Extended Status Block above, this element SHALL NOT be sent. 2203

 2204
NOTE: In the case of the urn:marlin:core:1-0:service:license-transfer:render operation, 2205
the sink MUST use the ESB in the Teardown message as is and MUST NOT locally re-2206
evaluate the Control for the Control.Actions.Play action. For all other operations, the 2207
Control.Actions.Play action MUST be performed before playing the content. 2208
 2209
NOTE: in the case of the urn:marlin:core:1-0:service:license-transfer:render and 2210
urn:marlin:core:1-0:service:license-transfer:checkout actions, the ESB MAY contain a 2211
SessionId critical parameter (see [8pus] §3) that the sink MUST send back when doing a 2212
urn:marlin:core:1-3:service:license-transfer:release on the same piece of content. 2213

5.7.6.6 Protocol Security Policies 2214
The Setup and AgentResult messages MUST obey the ‘Integrity+Freshness’ policy 2215
(Section 5.2.3.4.) The RunAgent and Teardown messages MUST obey the 2216
‘Integrity+Freshness’ policy (Section 5.2.4.3.) 2217
 2218
Moreover, in order to correlate the messages, the Message Correlation pattern 2219
described in [NEMO] §2.3 MUST be used. The specific information in the SOAP header 2220
guarantying the correlation MUST be covered by the message signature. 2221
 2222
The identifier for this policy is: 2223
urn:marlin:core:1.3:nemo:services:license-transfer:policy:0

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 79 of 154

6 Marlin Protocol Bindings 2224
Except where noted, Marlin Protocols SHALL use the Nemo SOAP/HTTP Message 2225
Bindings. 2226

6.1 HTTP/OBEX Binding 2227
The purpose of this section is to offer a binding of HTTP over a non-IP stack to support 2228
directly attached devices. When using OBEX as a transport over a non-IP stack this 2229
binding is REQUIRED. 2230
 2231
This binding supports the conveyance of HTTP messages over an OBEX transport. The 2232
general notion behind this binding is to map the HTTP-message as defined in 2233
[RFC2616] §4 and §5 to objects in the OBEX Object Model [OBEX13] §2. In so doing, 2234
this binding is a generic HTTP binding and could be used to exchange any content that 2235
the HTTP protocol supports. 2236
 2237
The following identifiers are defined to support this binding. 2238
Identifier Type Value Description
HOB_UUID UUID 0ba38ad4-018b-3b48-

b0ad-14946ef90493
Target header Connection Id
to connect to the service
supporting this binding

HOB_INSPECT URI /inspect.xml An absolute-path reference
form of a relativeURI
[RFC2396] §5 to the device
inspection document. For a
device supporting the Marlin
inspection service the result of
dereferencing this URI would
be an XML document
containing a
<mc:X_MarlinDeviceInfo>
element.

HOB_SCHEME URI
scheme

httpobex A protocol scheme identifier
used as the prefix to URLs.

 2239
To further elaborate on the construction of URLs a client using this binding would make 2240
http-like requests to the OBEX connected server using the following static syntax: 2241

httpobex://0ba38ad4-018b-3b48-b0ad-4946ef90493/ 2242
 2243
For example, to retrieve the well-known inspection service document (HOB_INSPECT) 2244
the URL would be: 2245
 httpobex://0ba38ad4-018b-3b48-b0ad-4946ef90493/inspect.xml 2246
 2247
The following OBEX Operations are REQUIRED to support this binding. 2248
 2249
OBEX Operation Opcode
CONNECT 0x80
DISCONNECT 0x81

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 80 of 154

GET 0x03
(0x83)

ABORT 0xFF
 2250
 2251

6.1.1 Connection Establishment 2252
This binding REQUIRES that a session between the client and server endpoints be 2253
established prior to exchanging HTTP messages over the transport. This is 2254
accomplished by sending a CONNECT request and the remote device indicates that the 2255
connection has been established by returning a successful response. 2256
 2257
The OBEX CONNECT request MUST contain the following fields: 2258

• CONNECT Opcode (0x80) 2259
• Packet Length 2260
• OBEX Version Number 2261
• Flags 2262
• Maximum OBEX Packet Length 2263

 2264
In addition to the above fields the CONNECT message MUST include a Target header 2265
bearing the value of the HOB_UUID. 2266
 2267
A successful OBEX CONNECT response MUST contain the following fields: 2268

• OBEX Response code (0xA0) 2269
• Packet Length 2270
• OBEX Version Number 2271
• Flags 2272

 2273
In addition to the above fields a successful response message MUST include a 2274
Connection ID header. This header MUST be the first header. 2275
 2276
The Connection ID is used to supply context in subsequent interactions between the 2277
client and server. 2278

6.1.2 Connection Termination 2279
Once a session has been established multiple message exchanges may occur over the 2280
connection. Once an application has completed its message exchanges it MUST tear 2281
down the session. This is accomplished by sending a DISCONNECT request, and the 2282
remote device indicates that the connection has been terminated, by returning a 2283
successful response. 2284
 2285
The OBEX DISCONNECT request MUST contain the following fields: 2286

• DISCONNECT Opcode (0x81) 2287
• Packet Length 2288

 2289
In addition to the above fields the DISCONNECT message MUST include a valid 2290
CONNECTION ID header to indicate which session to terminate. 2291
 2292

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 81 of 154

A successful OBEX DISCONNECT response MUST contain the following fields: 2293
• OBEX Response code (0xA0) 2294
• Packet Length 2295

 2296

6.1.3 Message Exchange 2297
Following the successful establishment of a connection, HTTP message exchanges may 2298
commence. 2299
 2300
This binding REQUIRES that the OBEX GET operation be used for all such message 2301
exchanges. This binding also REQUIRES that the connection id returned from the 2302
connection establishment phase of this binding be included in the Connection ID header 2303
of each GET request message. 2304

6.1.4 Aborting a Message Exchange 2305
In the advent that a multi-packet message exchange needs to be abandoned by the 2306
client application the OBEX ABORT operation may be used. See [OBEX13] for details. 2307

6.1.5 Mapping HTTP Messages to OBEX 2308
This binding leverages the many similarities between the OBEX protocol and HTTP to 2309
define mechanism by which to exchange HTTP messages over OBEX. 2310
 2311
The general approach is to map HTTP methods to OBEX operations, HTTP status 2312
codes to OBEX response codes, HTTP message header to OBEX HTTP header, and 2313
the HTTP message body to OBEX Body (or End-of-Body) header objects. 2314
 2315
The following table provides the mapping and the section number within the respective 2316
specifications where the mapped entity is defined. 2317
 2318
HTTP 1.1 Tokens
[RFC2616]

Section OBEX Field/Object
[OBEX13]

Section

Method §5.1.1 Opcode §3.3
Status-Code §6.1 Response code §3.2
message-header §4.2 HTTP header §2.2.8
message-body §4.3 Body/End-of-Body header §2.2.9
Content-Type entity-header §7.2.1 Type header §2.2.3
 2319

6.1.5.1 HTTP Method to OBEX Opcode Mapping 2320
This binding supports all of the HTTP Methods defined in [RFC2616] §9.2-§9.9. All of 2321
these methods are mapped onto the OBEX GET operation. The rationale being that the 2322
OBEX GET operation is much more flexible than the OBEX PUT in handling variable 2323
sized HTTP request and response messages. That is unlike the OBEX GET operation 2324
the OBEX PUT operation does not support multi-packet responses. 2325
 2326

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 82 of 154

6.1.5.2 HTTP Status Code to OBEX Response Code Mapping 2327
OBEX natively supports a direct mapping between HTTP status codes and OBEX 2328
response codes. This binding REQUIRES the use of the native mapping. 2329

6.1.5.3 HTTP Content-Type entity-header to OBEX Type Header Mapping 2330
To aid in dispatching and processing protocol messages the OBEX Type header 2331
SHOULD include the equivalent value as the value conveyed in the HTTP Content-Type 2332
entity-header. 2333
 2334

6.1.5.4 HTTP message-header to OBEX HTTP Header Mapping 2335
The OBEX HTTP header MUST contain the contents of the HTTP 1.1 message-header. 2336

6.1.5.5 HTTP message-body to OBEX Body or End-of-Body Mapping 2337
The OBEX Body header (or End-of-Body) MUST deliver the payload of the HTTP 2338
message. The payload MUST only include the message-body as described in [HTTP] 2339
§4.3. For example, when exchanging SOAP messages the HTTP message-body would 2340
be consumed by the entire SOAP message (<Envelope>…</Envelope>). Note that the 2341
message may be split into smaller messages and transferred in several OBEX GET 2342
messages. 2343

6.1.5.6 Example HTTP Message Exchange (Informative) 2344
The following tables give a generalized example of the protocol message flows used to 2345
exchange an HTTP request and response, respectively. These examples assume that 2346
an OBEX session was previously established. 2347
 2348
HTTP Client Request: Bytes Description
Opcode 0x03

0xnnnn
0xCB
0xnnnn
0x42
0x09
text/xml
0x47
0x…
0x48
0xnnnn
0x…

GET, Final bit NOT set
Length of packet
Connection Id header
Connection Id
Type header
Length of type object
Type of object (NULL terminated ASCII)
HTTP header
HTTP 1.1 header
Body header
Length of Body header
Body (HTTP message-body)

HTTP Server
Response:

 0x90
0x0003

CONTINUE, Final bit set
Length of response packet

HTTP Client Request:
Opcode 0x03

0xnnnn
0x47
0x…
0x48

GET, Final bit NOT set
Length of packet
HTTP header
HTTP 1.1 header
Body header

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 83 of 154

0xnnnn
0x…

Length of Body header
Body (continuation of HTTP message-
body)

HTTP Server
Response:

 0x90
0x0003

CONTINUE, Final bit set
Length of response packet

HTTP Client Request:
Opcode 0x83

0xnnnn
0x47
0x…
0x49
0xnnnn
0x…

GET, Final bit set
Length of packet
HTTP header
HTTP 1.1 header
End-of-Body header
Length of End-of-Body header
End-of-Body (last part of HTTP message-
body)

 2349
2350

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 84 of 154

 2351
HTTP Server
Response:

Bytes Description

 0x90
0xnnnn
0x42
0x09
text/xml
0x47
0x…
0x48
0xnnnn
0x…

CONTINUE, Final bit NOT set
Length of response packet
Type header
Length of type object
Type of object (NULL terminated ASCII)
HTTP header
HTTP 1.1 header
Body header
Length of Body header
Body (HTTP message-body)

HTTP Client Request:
Opcode 0x83

0x0003
GET, Final bit set
Length of packet

HTTP Server
Response:

 0xA0
0xnnnn
0x47
0x…
0x49
0xnnnn
0x…

SUCCESS, Final bit set
Length of response packet
HTTP header
HTTP 1.1 header
End-of-Body header
Length of End-of-Body header
End-of-Body (last part of HTTP message-
body)

 2352

6.2 SOAP 1.1/HTTP 1.1 Binding (Informative) 2353
This binding is normatively defined in [SOAP11] 6§. However to aid the reader germane 2354
aspects of the binding are informatively described here. 2355

6.2.1 HTTP Headers 2356

6.2.1.1 HTTP Method 2357
The HTTP request method must be POST as defined in the SOAP HTTP Binding 2358
[SOAP11]. 2359

6.2.1.2 Content-Type 2360
The Content-Type header must be ‘text/xml; charset=”utf-8”’ as defined in the SOAP 2361
HTTP Binding [SOAP11]. 2362

6.2.1.3 Content-Length 2363
The Content-Length header must be supplied in accordance with HTTP 1.1 [RFC2616]. 2364

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 85 of 154

6.2.1.4 SOAPAction 2365
The SOAP Action header must be supplied to give the intent of the SOAP HTTP request 2366
[SOAP11] §6.1.1. However, this is an application specific value and therefore its 2367
definition is out of scope for this specification. 2368

6.2.1.5 Caching Policy 2369
It is the intent of this binding to not preclude the use of HTTP proxies. However, a SOAP 2370
based application typically does not desire an HTTP intermediary to cache requests and 2371
responses. 2372
 2373
The following HTTP headers should be supplied to inhibit HTTP proxies from caching 2374
protocol messages. 2375
 2376
Requesters should include the following HTTP headers: 2377
 2378

• Cache-Control: no-cache, no-store 2379
• Pragma: no-cache 2380

 2381
Responders should include the following HTTP headers: 2382

• Cache-Control: no-cache, no-store, must-revalidate, private 2383
• Pragma: no-cache 2384

 2385
Additionally, it is not recommended to use the HTTP headers defined to support the 2386
HTTP 1.1 Validation Model. 2387

6.3 NEMO Message Binding 2388
This binding shall comply with the SOAP Message Binding as defined in [NEMO] §2. 2389

Additionally, the security of message exchanges MUST conform to the NEMO Security 2390
Bindings specification [NEMO] §3. Section 9.1.4.4 and section 9.1.4.5 describe signature 2391
verification and confidentiality protection of various target data, respectively. The proper 2392
application of the verification or encryption MUST align with NEMO usages as defined 2393
by [NEMO] §3. Thus, the signing/encryption targets for secure NEMO messaging MUST 2394
adhere to the following rules: 2395
 2396

1. A Marlin certificate containing a key used in a NEMO message with either of the 2397
NEMO usages; 2398

 2399
• http://nemo.intertrust.com/2005/10/security/secure-2400

protocol/basic/1.0#response-signingKey 2401
• http://nemo.intertrust.com/2005/10/security/secure-2402

protocol/basic/1.0#request-encryptionKey 2403
 2404

MUST contain the certificate policy; 2405
• id-cp-nemo-marlin-service-key 2406

 2407

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 86 of 154

2. A Marlin certificate containing a key used in a NEMO message with either of the 2408
NEMO usages; 2409
 2410
• http://nemo.intertrust.com/2005/10/security/secure-2411

protocol/basic/1.0#request-signingKey 2412
• http://nemo.intertrust.com/2005/10/security/secure-2413

protocol/basic/1.0#response-encryptionKey 2414
 2415

MUST contain the certificate policy; 2416
• id-cp-nemo-marlin-client-drm-key 2417

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 87 of 154

7 Marlin Key Management 2418

7.1 Introduction (Informative) 2419

In the Octopus DRM scheme an encrypted Content Key is delivered in the Octopus 2420
License Object. In the Marlin Key Management System, the Content Key may be 2421
encrypted with two different sets of keys: 2422

• Scuba Keys 2423
A key management system in which Octopus objects, such as Nodes and Links, 2424
carry keys needed to allow users and devices to derive the Content Key to 2425
access the protected content. 2426

• [Starfish] Revocation Keys 2427
A type of broadcast encryption that allows a Content Key to be encrypted in such 2428
a way that selected clients (for example, those that have been compromised in 2429
some way) are no longer able to access them. [Starfish] defines and uses the 2430
HBES (Hierarchical Hash-Chain Broadcast Encryption Scheme) key tree for 2431
creating and assigning revocation keys. 2432

 2433
If no Nodes have yet been revoked, the Content Key is only encrypted with the Scuba 2434
Sharing Key. After one or more revocations have taken place, the Content Key is 2435
additionally encrypted using the [Starfish] revocation mechanism. 2436

7.2 HBES Broadcast Key Block Validity 2437
[Starfish] defines a binary and XML encoding of the HBES Broadcast Key Block (BKB). 2438
Conformant implementations of this specification MUST support the XML BKB encoding 2439
defined in [Starfish] §4.3. This specification requires that the BKB revocation information 2440
be signed by a trusted authority. The license issuing entity MUST verify the validity and 2441
integrity of the distributed BKB. However, a license consuming entity, such as a Octopus 2442
DRM Engine, SHOULD NOT verify the signature over the BKB revocation information. 2443

7.3 Content Key Object before Exclusion 2444
The ContentKey Object (<oct:ContentKey> element) contains a <oct:SecretKey> 2445
element which represents the actual key used to encrypt the content. 2446
 2447
Before the first revocation of a device (or application), the Content Key CK (represented 2448
by the <oct:SecretKey> element) SHALL only be encrypted by the Scuba key (public or 2449
secret) of the entity the license is targeted to (the user for example) [8pus] §6. This 2450
results in the following algorithm: 2451
 2452

KMarlin = E(Kscuba, CK) 2453
 2454
In this algorithm the following keys are introduced: 2455
Kscuba The key distributed by Scuba [SCUBA]. 2456
KMarlin The key to be stored in the Content Key Object 2457
CK The key used to encrypt the content. 2458
 2459
Kscuba is calculated according to [8pus] §6. KMarlin is generated from Kscuba and CK. 2460
 2461

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 88 of 154

After encryption with Kscuba (public or secret) of the entity the license is targeted to, the 2462
resulting encrypted data KMarlin MUST be represented by <oct:SecretKey> in the 2463
<oct:ContentKey> element. 2464
 2465

7.4 Content Key Object after Exclusion 2466
After the first exclusion, the CK SHALL be encrypted using the [Starfish] revocation 2467
mechanism. All DRM Clients SHALL implement the [Starfish] revocation mechanism. 2468
The resulting data SHALL then be encrypted with the Scuba key (public or secret) of the 2469
entity the license is targeted to. This results in the following algorithm: 2470
 2471

KMarlin = E(Kscuba, (E(Kroot, CK)) 2472
 2473
In this algorithm the following keys are introduced: 2474
Kroot The Broadcast Key extracted from the BKB. See [Starfish] for a detailed 2475

description of how the Broadcast Key is recovered for a given receiver. 2476
Kscuba The key distributed by Scuba Key Distribution ([8pus] §6). 2477
KMarlin The key to be stored in the Content Key Object 2478
CK The key used to encrypt the content. 2479
 2480
When exclusion is used, Kroot is recovered from the BKB. The BKB MUST be carried in 2481
the same Bundle as the Content Key Object per Section 3.3.2. 2482
 2483
After encryption with Kroot, the byte sequence of <xenc:EncryptedData> is encrypted with 2484
Kscuba (public or secret) of the entity the license is targeted to. The resulting super-2485
encrypted data KMarlin MUST be represented by <oct:SecretKey> in <oct:ContentKey>. 2486
 2487
Since CK is encrypted by both Kroot and Kscuba, the ContentKey object SHALL follow the 2488
super-encryption guidance given in [xmlenc] §2.1.5. The algorithm used to encrypt the 2489
CK with Kroot SHALL be 128 bit AES in CBC mode and the padding SHALL follow the 2490
guidance given in [xmlenc] §5.2. The [xmlenc] representation of the CK encrypted with 2491
Kroot is signaled with an <xenc:EncryptionMethod> element Algorthm attribute with a 2492
value of: 2493

http://marlin-drm.com/starfish/algorithmID/1.0 2494
2495

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 89 of 154

The following example depicts the contents of the Octopus Bundle including the Content 2496
Key Object and the exclusion information supplied by the BKB: 2497
 2498
[01] <oct:Bundle xmlns:oct="http://www.octopus-drm.com/profiles/base/1.0">
[02]
[03] <!-- ContentKey -->
[04] <oct:ContentKey uid="urn:foo:bar:content-key:551881195">
[05] <oct:SecretKey uid="urn:foo:bar:content-key:551881195:secret-key">
[06] <KeyData encoding="xmlenc" format="RAW">
[07] <EncryptedData xmlns=”http://www.w3.org/2001/04/xmlenc#”
 Type=”http://www.w3.org/2001/04/xmlenc#Element”>
[08] <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
[09] <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
[10] <KeyName>urn:marlin:organization:phony:01:secret-sharing</KeyName>
[11] </KeyInfo>
[12] <CipherData>
[13] <CipherValue>K3K9Idxk...MjoyW+w2S9i…=</CipherValue>
[14] </CipherData>
[15] </EncryptedData>
[16] </KeyData>
[17] </oct:SecretKey>
[18] </oct:ContentKey>
[19]
[20] <!-- Other Octopus Objects -->
[21] <oct:Protector>
[22] <oct:ContentKeyReference>
[23] <oct:Uid>urn:foo:bar:content-key:551881195</oct:Uid>
[24] </oct:ContentKeyReference>
[25] <oct:ProtectedTargets>
[26] <oct:ContentReference>
[27] <oct:Uid>urn:x-octopus.intertrust.com:content:0012</oct:Uid>
[28] </oct:ContentReference>
[29] </oct:ProtectedTargets>
[30] </oct:Protector>
[31] <oct:Controller Id="controller"
[32] uid="urn:foo:bar:controller:2031011164">
[33] <oct:ControlReference>
[34] <oct:Uid>urn:foo:bar:control:874685522</oct:Uid>
[35] <oct:Digest>
[36] <DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#"
[37] Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[38] <DigestValue xmlns="http://www.w3.org/2000/09/xmldsig#">
[39] fj9yTLt4b90/SsYQyj8wB2dzRBU=</DigestValue>
[40] </oct:Digest>
[41] </oct:ControlReference>
[42] <oct:ControlledTargets>
[43] <oct:ContentKeyReference>
[44] <oct:Uid>urn:foo:bar:content-key:551881195</oct:Uid>
[45] <oct:Digest>
[46] <DigestMethod xmlns="http://www.w3.org/2000/09/xmldsig#"
[47] Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[48] <DigestValue xmlns="http://www.w3.org/2000/09/xmldsig#">
[49] yDOqz1Bs1IqstZpbp94jig3h5kY=</DigestValue>

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 90 of 154

[50] </oct:Digest>
[51] </oct:ContentKeyReference>
[52] </oct:ControlledTargets>
[53] </oct:Controller>
[54] <oct:Control uid="urn:foo:bar:control:874685522">
[55] <oct:ControlProgram
[56] protocol="http://www.octopus-drm.com/specs/scp-1_0">
[57] <oct:CodeModule
[58] type="http://www.octopus-drm.com/specs/pkcm-1_0">
[59] AAABsHB...LkdldExvY2FsVGltZQAAAAAA</oct:CodeModule>
[60] </oct:ControlProgram>
[61] </oct:Control>
[62] ...
[63] <!-- BroadcastKeyBlock -->
[64] <sf:BroadcastKeyBlock xmlns:sf="http://marlin-drm.com/starfish/1.2"
[65] keyTreeName="urn:marlin:starfish:keytree:1">
[66] <sf:RevocationInformation structureVersion="0"
[67] revocationVersion="0"
[68] distributionURIs=”http://marlin-tmo/bkb/bkb.xml”
 issuedOn=”...” nextUpdate=”...”
[69] ID="sYdkN33vvLG9sAN9bKp/8q0NKU=">
[70] mQEMAzR ... S5qp =q9mn</sf:RevocationInformation>
[71] <sf:EncryptedBroadcastKeys>
[72] QvAsufa ... W3zu =a4bq</sf:EncryptedBroadcastKeys>
[73] <!-- Signature -->
[74] <Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
[75] <SignedInfo>
[76] ...
[77] <ds:Reference URI="#sYdkN33vvLG9sAN9bKp/8q0NKU=">
[78] <ds:DigestMethod
[79] Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[80] <ds:DigestValue>GyGsF0Pi4xPU.. .</ds:DigestValue>
[81] </ds:Reference>
[82] </SignedInfo>
[83] </Signature>
[84] </sf:BroadcastKeyBlock>
[85] </oct:Bundle>
Example 7-1 XML Depicting super-encrypted content key 2499

Line [04] begins the <oct:ContentKey> element. Line [08] indicates that the symmetric 2500
encryption method is in use. 2501
 2502
Line [10] signals the name of the secret key with the <ds:KeyName> element. 2503
 2504
On line [13] the <xenc:CipherValue> element carries the base64 encoded representation 2505
of the super-encrypted CK. Decrypting this would reveal the XML representation of the 2506
encrypted content key as exemplified below: 2507
 2508
 <EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"> 2509
 <EncryptionMethod Algorithm="http://marlin-drm.com/starfish/algorithmID/1.0"/> 2510
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#"> 2511
 <KeyName>urn:marlin:starfish:keytree:1</KeyName> 2512
 </KeyInfo> 2513

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 91 of 154

 <CipherData> 2514
 <CipherValue>YOUENCRYPTEDRCONTENTKEYCOMESHERE</CipherValue> 2515
 </CipherData> 2516
 </EncryptedData> 2517
 2518
On line [64] of Example 7-1 the <sf:BroadcastKeyBlock> element is included in an 2519
<oct:Bundle> element. 2520
 2521
The integrity of the BKB revocation information must be protected. Line [66] depicts the 2522
<sf:RevocationInformation> element and line [74] shows the <ds:Signature> element 2523
which carries the integrity protection information. 2524
 2525
Line [71] illustrates the <sf:EncryptedBroadcastKeys> element which carries the base64 2526
encoding of the encrypted (with interval keys derived from the device key set [Starfish] 2527
§3.3.1) broadcast key. 2528

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 92 of 154

8 Renewability 2529

8.1 Overview 2530
Renewability in Marlin Core System implementations is supported in several ways: 2531

• Via implementation of upgrade mechanisms – devices that implement Marlin 2532
Core System Specifications MUST support a mechanism for updating the version 2533
of their implementation. 2534

• Licenses MAY encode a minimum security specification version requirement in 2535
control programs (see Section 8.2 and Section 12.5.4.3). 2536

• Via distribution and checking of Certificate Revocation Lists. Certificates that 2537
have been revoked MUST be published in a Certificate Revocation List (CRL). 2538
The distribution of the CRL MAY be accomplished via the Marlin Security Data 2539
Provider or some other mechanism. Additionally, certificates MAY be issued with 2540
the CRL Distribution Point (CDP) extension which can be used to aid in retrieving 2541
the freshest CRL. If revocation lists are used, only the serial number of revoked 2542
certificates SHOULD be include. That is, expired certificates SHOULD NOT 2543
remain in a CRL subsequent to their expiration. This practice may significantly 2544
reduce the size of the CRL. 2545

• Via denial of service to devices whose certificates have been revoked or that do 2546
not implement an acceptable version of the specification 2547

o Marlin protocols MUST include assertions that certify the version of their 2548
implementation. Service policies MUST require these assertions be 2549
present in the request messages. 2550

o Licenses MAY encode a minimum specifications version requirement. 2551
• As a last resort, [Starfish] Broadcast Encryption may be used to permanently 2552

prevent a device from accessing further content in a Marlin ecosystem. 2553
However, once revoked, version upgrade of the DRM Client will not suffice to 2554
restore its ability to participate in the ecosystem, as it would need to re-acquire a 2555
personality node and all content previously bound to that node would be invalid. 2556
The distribution of the Broadcast Key Block MAY be accomplished via the Marlin 2557
Security Data Provider or some other mechanism. Additionally, a Broadcast Key 2558
Block MAY be issued with a list of Distribution URIs. The Distribution URIs MAY 2559
be used to retrieve the current Broadcast Key Block in a manner specific to the 2560
URI. 2561

 2562

8.2 Specification Version Attributes 2563
A client MUST be provisioned with (at manufacturing time or personalization time) a 2564
trusted representation of the Security Specification Version attributes. The Security 2565
Specification Version Attributes convey trusted attributes about a system entity (a Nemo 2566
node). The lifecycle and security properties of these asserted attributes signal the 2567
security facilities of the underlying specification. In practice Security Specification 2568
Version attributes would only change if a security issue required some fundamental 2569
change in security components of the specification. For example, if one of the requisite 2570
encryption algorithms were found to have a design flaw then a new algorithm would be 2571
adopted. In this example, that would require the Security Specification Version attributes 2572
of the affected specification to change so as to reflect the new security component. 2573

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 93 of 154

 2574
The Security Specification Version attribute information is decoupled from a particular 2575
product implementation so as to independently manage and renew the security 2576
infrastructure. Specifically the lifecycle of, and the type of information signaled with 2577
Security Specification Version attributes are generally bound to the lifecycle of specified 2578
security mechanisms. 2579

 2580
The Security Specification Version and Role attributes are conveyed within a SAML 2581
assertion. As an optimization, Security Specification Version attributes SHOULD be 2582
asserted in the same SAML assertion as the Role attributes. The authority to generate 2583
this assertion may be delegated to Marlin Services however this operational detail is not 2584
in the scope of this specification. 2585
 2586
The asserted attributes apply to the entire Nemo node. The assertion MUST be bound to 2587
the Nemo Node of the DRM Client or other system entities and MUST be bound to the 2588
Security Specification Version attributes of the implementation itself. An implementation 2589
MUST ensure that the actual Security Specification Version attributes of the 2590
implementation are greater or equal to that of the assertion it possesses. 2591
 2592
The assertion(s) bearing Security Specification Version attributes MUST be included in 2593
appropriate Nemo protocols along with the asserted Role attributes to allow services to 2594
evaluate the attributes when deciding to provide service. 2595

• When the client assertion(s) is rejected by the service, the client SHOULD 2596
attempt to update its Security Specification Version attributes to an acceptable 2597
level. This may require a software update (or simply an upgrade to an existing 2598
assertion if the implementation was already updated). 2599

• The above allows software update and Security Specification Version attribute 2600
assertion acquisition to occur independently. If the versions in the assertion are 2601
less than what the current client software supports, it may be sufficient to acquire 2602
a new assertion that reflects the current software capabilities. Only if the client 2603
does not support an acceptable version of the specifications are software update 2604
and assertion renewal required. 2605

 2606
The Security Specificatin Version attributes referenced in the assertion MUST be made 2607
visible to the Octopus DRM Engine to be resolved at license evaluation time. Refer to 2608
the Section 12.5.4.3 of the DRM Usage Profiles for the specific attributes and arguments 2609
to the Octopus System.Host.GetObject() that allow an Octopus engine to access the 2610
value of the Security Specification Version certified in the assertion. 2611
 2612

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 94 of 154

9 Marlin Trust Management 2613

9.1 Certificates 2614
Certificates assert a binding between an identity and a public key. The format of the 2615
certificates used in Marlin is X.509 v3 [X509]. Additionally, the certificates used in Marlin 2616
rely upon [PKIX] as a certificate profile. Except where otherwise noted the certificate 2617
fields SHALL comply with the X.509 specification [X509] and the IETF PKIX profile 2618
[PKIX]. 2619
 2620
Certificates for NEMO Nodes are subject to the NEMO Trust Management Bindings 2621
([NEMO] §4) specification. 2622
 2623
The certified public keys used in Marlin have specific policies attached to them. The 2624
various Certification Authorities manage the lifecycle of the keys and their usage. 2625

Certificate Contents 2626
Typical contents of X.509 certificates used in Marlin consist of the following fields: 2627

• Version. 2628

• Serial Number. 2629

• Signature. 2630

• Issuer. 2631

• Validity. 2632

• Subject. 2633

• Subject Public Key Information. 2634

• Extensions: 2635

o Authority Key Identifier. 2636

o Subject Key Identifier. 2637

o Key Usage. 2638

o Basic Constraints. 2639

o Certificate Policies 2640

o CRL Distribution Points 2641

9.1.1.1 Version 2642
The value of this field MUST be 2, which corresponds to X.509 version 3 Certificates. 2643
 2644
Version ::= INTEGER { v3(2) } 2645

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 95 of 154

9.1.1.2 Signature 2646
The value of this field SHALL be either sha-1WithRSAEncryption6

 2649

 [RFC3279] or 2647
sha256WithRSAEncryption [PKIXALGS]. 2648
sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { 2650
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 } 2651
 2652
sha256WithRSAEncryption OBJECT IDENTIFIER ::= { 2653
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11 } 2654

9.1.1.3 Issuer 2655
The distinguished name of the Issuer MUST be represented with a single directory name 2656
attribute. The attribute type MUST be either a X.500 commonName or a directory name 2657
attribute whose syntax adheres to a URN and is identified by the object identifier is id-2658
nat-uri. The latter is the preferred attribute type and it MUST be used for all CA or end-2659
entity certificates managed outside of the trust authority (see Sections 9.4.) This attribute 2660
SHALL be encoded using UTF-8. 2661
 2662
 cf. 2663
 id-marlin OBJECT IDENTIFIER ::= {iso(1) identified-organization(3) dod(6) 2664
 internet(1) private(4) enterprise(1) marlin(23727)} 2665
 id-nemo OBJECT IDENTIFIER ::= {id-marlin nemo(1)} 2666
 id-nemo-nat OBJECT IDENTIFIER ::= {id-nemo nameAttribute(1)} 2667
 id-nat-uri OBJECT IDENTIFIER ::= {id-nemo-nat 1} 2668
 2669
See [NEMO] §4 for more information. 2670

9.1.1.4 Subject 2671
The distinguished name of the Subject field MUST be represented with a single attribute. 2672
The attribute type MUST be either a X.500 commonName or a URI attribute whose 2673
object identifier is id-nat-uri. The latter is the preferred attribute type and it MUST be 2674
used for all CA or end-entity certificates managed outside of the trust authority (see 2675
Sections 9.4.) This attribute SHALL be encoded using UTF-8. 2676

9.1.1.5 Subject Public Key Info 2677
This field carries the public key of the subject and identifies the algorithm with which the 2678
key is used. Presently the only supported algorithm is rsaEncryption. 2679
 2680
pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 } 2681
 2682
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1} 2683

9.1.2 Excluded Certificate Extensions 2684
Generally we are silent regarding optional certificate extensions. However, in some 2685
cases the use of the optional extension may have an adverse impact on interoperability, 2686
performance or implementation complexity. Therefore, the remainder of this sub-section 2687
indicates which of these extensions SHOULD NOT be included in certificates adhering 2688
to this profile. 2689

6 Note that the key size is a matter to be determined by a compliance body. Also note that current
best practices are for the trust anchors to have larger key sizes, which, as of this writing, is
typically 2048 bits.

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 96 of 154

9.1.2.1 Policy Mappings 2690
The Policy Mappings extension SHOULD NOT be included in certificates adhering to 2691
this profile. Doing so may impact interoperability and performance. 2692

9.1.2.2 Policy Constraints 2693
The Policy Constraint extension SHOULD NOT be included in certificates adhering to 2694
this profile. The Policy Constraint extension could be used as a technical mechanism by 2695
which to enforce the above recommendation to prevent Policy Mappings. However, 2696
using Policy Constraints may have an adverse effect on implementation complexity and 2697
interoperability. 2698

9.1.2.3 Subject Alternative Name 2699
The Subject Alternative Name extension SHOULD NOT be included in certificates 2700
adhering to this profile. 2701

9.1.2.4 Issuer Alternative Name 2702
The Issuer Alternative Name extension SHOULD NOT be included in certificates 2703
adhering to this profile. 2704

9.1.3 Certificate Extensions 2705
Marlin Core System implementation certificate extension fields include Authority Key 2706
Identifier, Subject Key Identifier, Basic Constraints, Certificate policy, and CRL 2707
Distribution Points. 2708

9.1.3.1 Authority Key Identifier 2709
This field contains a hash of the issuer’s public key. 2710
 2711
extnID : id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 } 2712
critical : FALSE 2713
value : hash(PublicKey) 2714
 2715
The key identifier SHOULD be composed of the 160-bit SHA-1 hash (as defined in [PKIX] 2716
§4.2.1.2 method 1) of the value of the bit string issuerPublicKey (excluding the tag, length, 2717
and number of unused bits). This field is used to enable key changeover. 2718

9.1.3.2 Subject Key Identifier 2719
This field contains a hash of the subject’s public key. 2720
 2721
extnID : id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 } 2722
critical : FALSE 2723
value : hash(PublicKey) 2724
 2725
The key identifier is composed of the 160-bit SHA-1 hash (as defined in [PKIX] §4.2.1.2 2726
method 1) of the value of the bit string subjectPublicKey (excluding the tag, length, and 2727
number of unused bits). 2728

9.1.3.3 Key Usage 2729
The key usage extension defines the purpose for which the key has been certified. For 2730
example, it specifies whether a key can be used for signature, certificate signing and key 2731
or data encipherment. The key usage field contains a bit string consisting of a series of 2732

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 97 of 154

flags, as indicated in [PKIX] §4.2.1.3. The particular key usages utilized by this profile 2733
are specified in Section 9.4. 2734
 2735
extnID : id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 } 2736
critical : TRUE 2737

9.1.3.4 Basic Constraints 2738
This field contains the value of the certificate’s basic constraints. The basic constraints 2739
extension specifies whether the subject of the certificate is a Certificate Authority (CA) 2740
and in that case the maximum number of CA certificates that can follow this certificate in 2741
a certification path. This profile MUST adhere to the definition provided in [PKIX] 2742
§4.2.1.10. 2743
 2744
extnID : id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 } 2745
critical : TRUE 2746

9.1.3.5 CRL Distribution Points Field 2747
This field identifies how CRL information is obtained. This profile relies upon an indirect 2748
CRL as described in [PKIX] §5. The CRL Distribution Points field MUST contain a 2749
DistributionPointName. This name MUST contain a general name of type URI. This URI 2750
is a pointer to the current CRL and is issued by the entity identified in cRLIssuer. 2751
 2752
extnID : id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= { id-ce 31 } 2753
 2754
All implementations SHALL be prepared to resolve the URI using the HTTP GET 2755
method. The URI MUST point to a file that has an extension of ".crl". The file MUST 2756
contain the DER encoded CRL [RFC 2585]. The mime-type of the returned resource 2757
SHALL be “application/pkix-crl”. 2758
 2759
The following is an (non-normative) example of how the cRLDistributionPoints field is 2760
populated: 2761
 2762
cRLDistributionPoints: 2763
 DistributionPoint: 2764
 distributionPoint: fullName: uniformResourceIdentifier: http://marlin-2765
tmo.com/crl/mtmocrls.crl 2766
 cRLIssuer: directoryName: URI=urn:marlin:datacertification:revocation 2767
 2768

9.1.3.6 Certificate Policies 2769
As specified in [PKIX] §4.2.1.5, this field indicates the policies under which the certificate 2770
has been issued and the purposes for which the certificate may be used. It plays a 2771
critical role in the construction of certification paths and the validation there of. 2772
 2773
extnID : id-ce-certificatePolicies OBJECT IDENTIFIER ::= {id-ce 32} 2774
critical : TRUE 2775
 2776
The field contains policyIdentifier parameters within the PolicyInformation to indicate the 2777
OIDs of the policies. Certificates SHALL NOT include policyQualifiers other than those 2778
defined in [PKIX] §4.2.1.5, the CPS Pointer and the User Notice qualifiers. 2779
The CA MAY include the special policy anyPolicy as prescribed in [PKIX] §4.2.1.5. 2780
 2781
anyPolicy OBJECT IDENTIFIER ::= { id-ce-certificatePolicies 0 } 2782
 2783

http://marlin-tmo.com/crl/mtmocrls.crl�
http://marlin-tmo.com/crl/mtmocrls.crl�

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 98 of 154

The application specific policy OIDs are defined in Sections 9.1.3.6.1 and 9.1.3.6.2. The 2784
certificate policies and end-entity purposes for these different policy identifiers are further 2785
described in Sections 9.1.4.4, 9.1.4.5 and 9.4. 2786

9.1.3.6.1 Certificate Policy OIDs for Octopus 2787
The certificate policy OIDs defined for Octopus are shown below. 2788
 2789
id-octopus OBJECT IDENTIFIER ::= {id-marlin octopus(2)} 2790
id-octopus-cp OBJECT IDENTIFIER ::= {id-octopus certificatePolicies(2)} 2791
id-octopus-marlin-cp OBJECT IDENTIFIER ::= {id-octopus-cp marlin(10)} 2792
 2793
The following Marlin policy identifier OIDs are defined for the Octopus DRM. 2794
 2795
id-cp-octopus-marlin-scuba-sharing-key ::= {id-octopus-marlin-cp 1} 2796
id-cp-octopus-marlin-scuba-confidentiality-key ::= {id-octopus-marlin-cp 2} 2797
id-cp-octopus-marlin-signing-personality ::= {id-octopus-marlin-cp 3} 2798
id-cp-octopus-marlin-signing-node ::= {id-octopus-marlin-cp 4} 2799
id-cp-octopus-marlin-signing-link ::= {id-octopus-marlin-cp 5} 2800
id-cp-octopus-marlin-signing-controller ::= {id-octopus-marlin-cp 6} 2801
id-cp-octopus-marlin-signing-control ::= {id-octopus-marlin-cp 7} 2802
 2803
Note: The OIDs represented by the identifiers id-cp-octopus-marlin-scuba-sharing-key 2804
and id-cp-octopus-marlin-scuba-confidentiality-key are reserved for future use. 2805
 2806

9.1.3.6.2 Certificate Policy OIDs for NEMO 2807
The Certificate policy OIDs defined for NEMO are shown below. 2808
 2809
id-nemo OBJECT IDENTIFIER ::= {id-marlin nemo(1)} 2810
id-nemo-cp OBJECT IDENTIFIER ::= {id-nemo certificatePolicies(2)} 2811
id-nemo-marlin-cp OBJECT IDENTIFIER ::= {id-nemo-cp marlin(10)} 2812
 2813
The following Marlin policy identifier OIDs are defined for the NEMO protocol and 2814
services. 2815
 2816
id-cp-nemo-marlin-client-drm-key ::= {id-nemo-marlin-cp 1} 2817
id-cp-nemo-marlin-service-key ::= {id-nemo-marlin-cp 3} 2818
id-cp-nemo-marlin-signing-data-certification ::= {id-nemo-marlin-cp 4} 2819
id-cp-nemo-marlin-signing-service-role ::= {id-nemo-marlin-cp 5} 2820
id-cp-nemo-marlin-signing-client-role ::= {id-nemo-marlin-cp 6} 2821
id-cp-nemo-marlin-signing-security-metadata ::= {id-nemo-marlin-cp 7} 2822
id-cp-nemo-marlin-signing-bootstrap ::= {id-nemo-marlin-cp 8} 2823
id-cp-nemo-marlin-signing-content-metadata ::= {id-nemo-marlin-cp 9} 2824
 2825
Note: OID {id-nemo-marlin-cp 2} is reserved. 2826
 2827

9.1.4 Certificate Validation 2828
The certificate user MUST check a sequence of certificates until reaching a trust anchor 2829
to verify the validity of the certified public key. 2830
Except where otherwise noted, the process of validating a certificate SHALL produce the 2831
same results and exhibit the same behavior as the path validation process defined in 2832
[PKIX] §6.1. 2833
 2834
The certificate validation process consists of the following steps: 2835

• Certificate Verification Process. 2836

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 99 of 154

• Certificate Checking Process. 2837

• Signature Verification Process. 2838

• Key/Data Encipherment Process. 2839

9.1.4.1 Trust Anchors 2840
To validate a certificate, a certificate user MUST have the proper trust anchor or utilize 2841
an online certificate validation service. If the certificate user performs path validation it 2842
MUST manage trust anchor information securely to prevent unauthorized changes. The 2843
secure distribution of trust anchors is out of scope for this specification. However, a 2844
description of a trust hierarchy which supports these best practices and enables certain 2845
operational efficiencies is discussed in Section 9.4. 2846

9.1.4.2 Certificate Path Validation 2847
Each certificate MUST be verified by checking the certificate against its issuer. The 2848
issuer certificate MUST be checked against its issuer, in turn, until the trust anchor is 2849
reached. It is RECOMMENDED that the algorithm defined in [PKIX] §6.1 is 2850
implemented. 2851
Input data to the certificate path validation process include the following items: 2852

• A certificate (target). 2853

• Issuer certificate information, including the following: 2854

o Trust Anchor. 2855

o Public key. 2856

o Subject. 2857

o Basic constraints. 2858

o Key usage. 2859

o Certificate Policies. 2860

• List of acceptable certificate policies 2861

• The current date and time. 2862
 2863

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 100 of 154

The validation algorithm defined in [PKIX] §6.1 takes into consideration Certificate 2864
Policies. Thus the validation algorithm implemented MUST also meet the following 2865
conditions: 2866

• Check Certificate Policies 2867
The policy information terms of the issuing certificate MUST be either anyPolicy 2868
or one or more of the intended certificate policy terms. See [PKIX] §4.2.1.5 and 2869
§6.1.3. The policy terms MUST be checked against the acceptable policies. See 2870
Section 9.1.3.6.1 and 9.1.3.6.2 for the policy identifiers. The acceptability of the 2871
policy terms are described in Sections 9.3 and 9.4. 2872

9.1.4.3 Certificate Checking Process 2873
The certificate checking process determines if the certificate can act on the specified 2874
target type. Input data to the certificate checking process includes a valid end-entity 2875
certificate from the path validation process and the key usage required to act on the 2876
target. To check the validity of the certificate, the system MUST check the following 2877
values: 2878

• Key Usage 2879
The key usage MUST be appropriate for the target type. 2880

9.1.4.4 Signature Verification of Signed Data 2881
Input data to the signature verification process includes the following items: 2882

• Trust Anchor. 2883

• Target data. 2884

• Target signature. 2885

• Target type. 2886

• Certificate information (verified, as in Section 9.1.4.2), including the following: 2887

o Trust Anchor 2888

o Public Key 2889

o Subject 2890

o Basic Constraint 2891

o Key Usage 2892
 2893
The output from the signature verification process is either a positive or negative result. 2894
To validate a signature, the system MUST check the following items: 2895

• Target Signature 2896
The target data MUST be signed by the public key of the certificate. 2897

• Key Usage 2898
The digitalSignature bit MUST be set in the key usage field of the certificate. 2899

 2900

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 101 of 154

For the signing keys used to secure NEMO messages refer to Section 6.3 for processing 2901
rules regarding the NEMO security bindings as they relate to the NEMO signing targets. 2902

9.1.4.5 Key/Data Encipherment Process 2903
Input to the key or data encipherment process includes the following information: 2904

• Target information includes the following: 2905

o Target data. 2906

o Target type. 2907

• Certificate information (verified, as in Section 9.1.4.2) includes the following: 2908

o Trust Anchor 2909

o Public Key 2910

o Subject 2911

o Key Usage 2912
 2913
Output from the key or data encipherment process consists of the encrypted data. 2914
To encrypt data or keys, the system must check the following items: 2915

• Key Usage 2916
If target data is a key, the KeyEncipherment bit must be set in key_usage of the 2917
certificate. If target data is not a key, the DataEncipherment bit must be set in 2918
key_usage of the certificate. 2919

For processing rules regarding the NEMO security bindings as they relate to the NEMO 2920
encryption targets refer to Section 6.3. 2921

9.2 Certificate Revocation List 2922
A Certificate Revocation List (CRL) is used to convey to a certificate user the set of 2923
revoked certificates. The format of the CRL used in Marlin is X.509 v2 CRL [X509]. 2924
Additionally, the CRL used in Marlin rely upon [PKIX] as a CRL profile. This document 2925
specifies the use of indirect CRLs and their contents. The balance of this section 2926
describes the necessary fields to support an indirect CRL. Except where otherwise noted 2927
the CRL fields SHALL comply with the X.509 specification [X509] and the IETF PKIX 2928
profile [PKIX]. 2929

CRL Contents 2930
Contents of X.509 CRLs used in Marlin consist of the following fields: 2931

• Version. 2932

• Signature. 2933

• Issuer. 2934

• This Update. 2935

• Next Update. 2936

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 102 of 154

• Revoked Certificates. 2937

o User Certificate. 2938

o Revocation Date. 2939

o CRL Entry Extension: 2940

 Certificate Issuer. 2941

• CRL Extensions: 2942

o Authority Key Identifier 2943

o CRL Number. 2944

o Issuing Distribution Point. 2945

9.2.1.1 Version 2946
The value of this field MUST be 1, which corresponds to X.509 version 2 CRL. 2947
 2948
Version ::= INTEGER { v2(1) } 2949

9.2.1.2 Signature 2950
The value of this field SHALL be either sha-1WithRSAEncryption7

 2953

 [RFC3279] or 2951
sha256WithRSAEncryption [PKIXALGS]. 2952
sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { 2954
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 } 2955
 2956
sha256WithRSAEncryption OBJECT IDENTIFIER ::= { 2957
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11 } 2958

9.2.1.3 Issuer 2959
The distinguished name of the CRL Issuer MUST be represented with a single directory 2960
name attribute. The attribute type MUST be either a X.500 commonName or a directory 2961
name attribute whose syntax adheres to a URN and is identified by the object identifier 2962
id-nat-uri as defined in Section 9.1.1.3. 2963

9.2.1.4 CRL Entry Extension 2964
All mandatory fields for this extension must be present and follow the guidance given in 2965
[PKIX] §5.3. Of particular importance is the presence of the certificateIssuer field which 2966
identifies the authority which issued the revoked certificate. 2967

9.2.1.5 CRL Extensions 2968
As previously mentioned, the specification adheres to the [PKIX] CRL profile which 2969
mandates which fields must be present in the CRL Extensions. Specifically the 2970
AuthorityKeyIdentifier and the CRLNumber MUST be present. Additionally, since this 2971
specification relies upon an indirect CRL the issuingDistributionPoint extension MUST be 2972
present. 2973

7 Note that the key size is a matter to be determined by a compliance body. Also note that current
best practices are for the trust anchors to have larger key sizes, which, as of this writing, is
typically 2048 bits.

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 103 of 154

9.2.1.5.1 Issuing Distribution Point 2974
This field MUST follow the guidance given in [PKIX] §5.2.5. Specifically since the CRL is 2975
an indirect CRL the indirectCRL field MUST be present and MUST have a value of 2976
TRUE. 2977

9.3 Trust Management of Marlin Services (Informative) 2978
An implementation of a Marlin Core System may consist of a number of services. These 2979
services rely upon the trust management mechanisms defined by this specification. 2980
Additionally, delivery system specifications which build upon the Marlin Core System 2981
may utilize the same mechanisms defined here. This section gives a general overview of 2982
the types of services and the manner in which they may leverage the trust management 2983
mechanisms defined elsewhere in this specification. 2984

9.3.1 Secure Peer Interactions 2985

9.3.1.1 Keys Used in NEMO Secure Communications 2986
A short summary of the keys used to secure communications using the NEMO stack is 2987
provided below. The functions of the keys issued to a service are typically common for 2988
all such entities. They are as follows: 2989

• Keys for signing and encrypting protocol data 2990
All NEMO-based services have these keys. 2991

• Keys for signing the service role attribute assertions 2992
An entity must have a valid, signed role attribute assertion to be accepted as a 2993
NEMO service. These signing keys are issued under the authority of a service 2994
specific CA. 2995

• Key for signing the client role attribute assertions 2996
An entity must have a valid, signed client role attribute assertion to be accepted 2997
as a NEMO client. The Personalization Service signs client role attribute 2998
assertions. 2999

• Keys for signing and encrypting data at the client 3000
All clients have these keys. There may be separate key sets for use by DRM-3001
related applications and non-DRM related applications. 3002

9.3.2 DRM Services 3003
A variety of services which are either defined or enabled by this specification fall into the 3004
catagory of DRM Services. In general, these services are associated with the 3005
provisioning, management and realization of content sharing and distribution systems. 3006
Examples of the services which are specifically defined by this specification are called 3007
out in the subsequent sections. Examples of services which are enabled by this 3008
specification are those services which directly support a specific delivery system 3009
technology and the business models which they enable. For example a service which 3010
collects content usage information would fall into this catagory. 3011

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 104 of 154

9.3.2.1 Registration Services 3012
Registration Sevices are those services which are responsible for the provisioning and 3013
relationship management of Octopus Objects used to influence the governance model. 3014
One such service defined by this specification is the DRM Object Provider service. 3015
 3016
Trust Management supports these types of services by defining the certified keys used 3017
to secure the Octopus Objects. These keys are certified by a Registration Services CA 3018
(see 9.4.4.) Specifically, these certified keys enable a service to sign User Nodes, Links, 3019
and Controls. 3020

• User Nodes 3021
User Nodes contain a set of Scuba Sharing Keys. 3022

• Links 3023
Links are issued by the Registration Service. 3024

• Controls 3025
Controls may be issued by the Registration Service. 3026

9.3.2.2 License Issuing Services 3027
License Issuing Services are those services which are responsible for the creation of 3028
Octopus Objects used to govern access to content. 3029
 3030
Trust Management supports these types of services by defining the certified keys used 3031
to secure some of these Octopus Objects. These keys are certified by a Content License 3032
Services CA (see 9.4.5.) Specifically, these certified keys enable a service to sign 3033
Controller and Control objects. 3034
 3035

9.3.2.3 Marlin Personalization Services 3036
Personalization Services are those services which are responsible for the provisioning of 3037
Octopus Objects used to represent the personality of a device. 3038
 3039
Trust Management supports these types of services by defining the certified keys used 3040
to secure these Octopus Objects. These keys are certified by a DRM Personalization 3041
CA. These certified keys enable the certificate user to sign Personality Nodes. 3042

• Personality Nodes 3043
A DRM Client Personality Node contains a set of Scuba Sharing Keys. These 3044
nodes and the keys they carry are issued by a personalization service or device 3045
manufacturer. 3046

9.3.3 Data Certification Services 3047
A variety of services which are either defined or enabled by this specification fall into the 3048
catagory of Data Certification Services. In general, these services are associated with 3049
the provisioning, management and renewal of security and integrity services. Examples 3050
of the services which are specifically defined by this specification are called out in the 3051
subsequent sections. 3052

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 105 of 154

9.3.3.1 Security Metadata Certification Services 3053
Security Metadata Certification Services are those services which are responsible for the 3054
attestation and issuance of security metadata used in the renewal and remediation of 3055
trust objects. Some examples of security metadata items are trusted time and certificate 3056
revocation lists (CRLs). One such service defined by this specification is the Security 3057
Data Provider service (Section 4.2.3.) 3058
 3059
Trust Management supports these types of services by defining the certified keys used 3060
to secure the metadata. These keys are certified by a Security Metadata Certification 3061
Services CA. Specifically, these certified keys enable the service to sign tokens attesting 3062
to the freshness or qualities of security metadata. 3063

9.3.3.2 Content Metadata Certification Services (aka Content Packager) 3064
Content Metadata Certification Services are those services which are responsible for the 3065
integrity protection of the content metadata. 3066
 3067
Trust Management supports these types of services by defining the certified keys used 3068
integrity protect the content metadata. 3069

9.4 Trust Hierarchies and Policies 3070
The Marlin Core System implementation employs X.509 Version 3 certificates for binding 3071
an identity to a public key, and constraining the usage of the certified key to a specific 3072
purpose. The following sections define the certificate profile, the certificate contents of 3073
defined fields, and the trust hierarchies for the management and validation of Marlin 3074
Core System implementation specification certificates. Except where otherwise noted 3075
certificates for Marlin Core System implementation SHALL comply with the X.509 3076
Version 3 specification [X509] and the IETF PKIX profile [PKIX]. 3077
 3078
The symbols in Figure 9-1 are used to depict the relationship of the entities in the trust 3079
hierarchy including the entities which participate and the certificates and keys issued. 3080
 3081

 3082
Figure 9-1 Symbol Legend 3083

 3084
A single ended arrow between objects in the diagram describes a “Certifies” relationship. 3085
In essence, this suggests that the certificate from which the arrow sources is used to 3086
sign the object that the arrow points to. A double ended arrow between objects 3087
describes a binding of and identity to a role. A single midline arrow indicates an 3088
‘authorizes’ relationship. 3089
 3090
The distinction between the "Trust Authority” and the "Delegated CA" is that a 3091
"Delegated CA" is operated by Marlin participating companies (or on their behalf) 3092

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 106 of 154

whereas the Trust Authority is operated by a Marlin-wide entity. 3093
 3094
The following diagram depicts the top level trust topology of the Marlin Core System. 3095

 3096
Figure 9-2 Top-level Trust Topology 3097

 3098
The trust topology is comprised of a self-signed system root, the Marlin System Root, 3099
and three functional certificate hierarchies, the DRM Services Certificate Hierarchy, the 3100
Data Certification Services Certificate Hierarchy and the Peer Application Interaction 3101
Hierarchy8. These trust authorities delegate to subordinate Certification Authorities the 3102
responsibility of issuing and managing the lifecycle of CA and end-entity certificates. 3103
These subordinate CAs may have a certificate policy of “anyPolicy” or a specific set of 3104
certificate policy terms may be bound to their certificates. It is REQUIRED that 3105
downstream subordinate CAs will have specific certificate policy terms in their CA 3106
certificates and that they will propagate those terms into the end-entity certificates they 3107
issue. That said, the certificates issued by the subordinate CAs must adhere to the 3108
policy information terms conveyed in their certificate. Additionally, the subordinate CAs 3109
further constrains their subordinates and end-entities with certificate policies, and key9

9.4.1 Peer Application Interaction Trust Hierarchy 3111

. 3110

The Marlin System Peer Application Interaction Trust Hierarchy is responsible for the 3112
lifecycle and management of end-entity certificates used to secure participant 3113
communication protocol interactions. Generally the certified keys bind a key to an 3114
identity of either a client or service system entity. 3115
 3116
The following diagram depicts the certificates managed under this authority. 3117

8 To optimize path validation and to minimize the reliance on self-signed certificates a best
practice would be to distribute and rely upon these functional root certificates as trust anchors.
9 A compliance regime may dictate otherwise but it may be operationally simpler for the Marlin
system root authority to not constrain in any way the functional roots and for the functional roots
to minimize any constraints it puts on the operational certification authorities. With that in mind the
root would not specify any certificate policies and the functional roots would minimally constrain
the operational CAs to “anyPolicy”.

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 107 of 154

 3118
Figure 9-3 Peer Application Interaction Trust Hierarchy 3119

9.4.1.1 Peer Application Interaction Authority 3120
The Peer Application Interaction Authority is used to authorize instances of Peer 3121
Application Interaction Certification Authorities. This authority is used to issue 3122
certificates to Marlin participants so that they may operate a CA which certifies end-3123
entity certificates for Devices or Client applications and Services such that they may 3124
communicate application or DRM data in a secure and interoperable manner. 3125
 3126
The following table describes the Certificates issued by this authority and the intended 3127
usage of the keys certified by CA subordinates. 3128

Certificates that
Authorize a
Subordinate CA
to Certify …

Basic Constraint Key Usage Certificate Policy
Identifiers

Signing Certificates for Devices and Client Applications Protocol and Service
Interaction

DRM keys of a
NEMO Node

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-nemo-marlin-client-
drm-key

Signing Certificates for NEMO Protocol and Service Interaction

Service keys CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-nemo-marlin-
service-key

Table 9-1 Peer Application Interaction Certifying Keys 3129

9.4.1.2 Peer Application Interaction Certification Authority 3130
This Certification Authority certifies the keys with the following usage and policies. 3131
 3132

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 108 of 154

Key Signing/
Encryption
Targets

Basic
Constraint

Key Usage Certificate Policy
Identifiers

Signing and/or Encrypting DRM or Application Payloads

Keys for
signing
DRM/Appli
cation data

Data for use
by DRM
applications

CA=FALSE digitalSignature id-cp-nemo-marlin-
client-drm-key

Keys for
encrypting
DRM/Appli
cation data

Data for use
by DRM
applications

CA=FALSE dataEncipherment id-cp-nemo-marlin-
client-drm-key

Keys for
encrypting
DRM/Appli
cation
keys

Keys for
use by DRM
applications

CA=FALSE keyEncipherment id-cp-nemo-marlin-
client-drm-key

Table 9-2 Client End-Entity Certificates 3133

 3134

Key Basic
Constraint

Key Usage Certificate Policy Identifiers

NEMO Protocol Services Interactions
Sign protocol
data

CA=FALSE digitalSignature id-cp-nemo-marlin-service-key

Encrypt protocol
data

CA=FALSE keyEncipherment id-cp-nemo-marlin-service-key

Table 9-3 Service End-Entity Certificates 3135

9.4.2 DRM Services Trust Hierarchy 3136
The following diagram depicts the entities which fall under this portion of the trust 3137
topology. 3138

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 109 of 154

 3139
Figure 9-4 DRM Services Trust Hierarchy 3140

9.4.2.1 DRM Services Authority 3141
The DRM Services Authority may be used to authorize instances of a three distinct 3142
Certification Authorities. These Certification Authorities are described separately so as to 3143
highlight their individual functions and characteristics. However, other factors which are 3144
out of scope for this document may influence whether this degree of separation is 3145
necessary. For example, compliance criteria or operational efficiencies may be best 3146
served by combining the Content License Service CA with the Registration CA. This 3147
specification does not mandate separation or combination of the CAs but merely 3148
supplies an informative set of guidelines for constructing a trust topology. 3149
 3150
The DRM Services Authority may issue certificates to Marlin participants so that they 3151
may operate a CA which certifies end-entity certificates for DRM Device or DRM Client 3152
application Personalization, Content License issuance and Registration services. This 3153
authority may also enable the subordinate CAs to issue certificates used to bind 3154
identities to specific roles. 3155
 3156
The following subsections describe the three subordinate CAs independently as if they 3157
had a separate trust authority. 3158

9.4.3 DRM Client Personalization Trust Hierarchy 3159
The DRM Services Authority enables a trust hierarchy focused on the personalizing 3160
DRM Devices and Client Applications. 3161

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 110 of 154

 3162
Figure 9-5 DRM Client Personalization 3163

9.4.3.1 Trust Authority 3164
 3165

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 111 of 154

The DRM Services Authority is used to authorize instances of a DRM Personalization 3166
Certification Authority. A DRM Personalization Certification Authority issues end-entity 3167
certificates used to personalize a DRM Client. 3168
 3169

Certificates that
Authorize a
Subordinate CA
to Certify …

Basic Constraint Key Usage Certificate Policy
Identifiers

Marlin Octopus Personalization Service or Device Manufacturer

Keys for signing
personality nodes

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-octopus-marlin-
signing-personality

NEMO Protocol and Service Interaction

Keys for signing
the service role

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-nemo-marlin-
signing-service-role

Keys for signing
Client Role
information

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-nemo-marlin-
signing-client-role

Table 9-4 Personalization Certifying Keys 3170

3171

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 112 of 154

 3172

9.4.3.2 DRM Personalization Certification Authority 3173
In Marlin, a client application hosts both an Octopus Personality Node, which provides a 3174
secure environment for DRM operations, and a NEMO Node, which is used to establish 3175
secure, interoperable communications with various services. 3176
 3177
DRM Devices and DRM client applications require a variety of certificates and keys to 3178
interoperate with services and to participate in the consumption of protected content. An 3179
instance of a subordinate DRM Personalization Certification Authority is responsible for 3180
issuing the certificates which are used to personalize a device or client application. The 3181
certificates issued by this authority should be constrained to specific purposes. The 3182
keys, certificates and assertions which personalize a device or client application may be 3183
provisioned at manufacture time or delivered via a personalization bootstrap protocol. 3184
 3185
The keys used to sign a Personality node MUST have key usages, and certificate 3186
policies that allow them to sign Octopus Personality Nodes (digitalSignature and id-cp-3187
octopus-marlin-signing-personality, respectively.) 3188
 3189

Key Used
to Sign…

Basic Constraint Key Usage Certificate Policy
Identifiers

Marlin Octopus Personalization Service or Device Manufacturer
Personality
nodes

CA=FALSE digitalSignature id-cp-octopus-marlin-
signing-personality

Table 9-5 Signing Keys and Certificates for Personalization Service or Device Mfg. 3190

This subordinate CA also issues certificates which may be used for protocol interactions 3191
and to sign Client role attribute assertions. 3192
 3193

Key Basic
Constraint

Key Usage Certificate Policy Identifiers

Personalization Services
Keys for signing
the client role

CA=FALSE digitalSignature id-cp-nemo-marlin-signing-
client-role

Keys for signing
the service role

CA=FALSE digitalSignature id-cp-nemo-marlin-signing-
service-role

Table 9-6 Role Signing Certificates 3194

3195

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 113 of 154

9.4.4 Registration Services Trust Hierarchy 3196
The DRM Services Authority enables a trust hierarchy focused on a domain 3197
management model. 3198
 3199
The following diagram depicts the entities which fall under this portion of the trust 3200
topology. 3201

 3202
Figure 9-6 Registration Trust Hierarchy 3203

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 114 of 154

9.4.4.1 Trust Authority 3204
The DRM Services Authority is used to authorize instances of a Marlin User/Device 3205
Registration Certification Authority. A Marlin User/Device Registration Certification 3206
Authority issues end-entity certificates used to operate a domain registration service. 3207
That is, this authority is used to delegate to authorized entities the right to issue 3208
certificates which may be used to operate a registration service. 3209

Certificates that
Authorize a
Subordinate CA
to Certify …

Basic Constraint Key Usage Certificate Policy
Identifiers

NEMO Protocol and Service Interaction

Keys for signing
the service role

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-nemo-marlin-
signing-service-role

Registration Service

Keys for signing
Octopus objects

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-octopus-marlin-
signing-node

id-cp-octopus-marlin-
signing-link

id-cp-octopus-marlin-
signing-control

Table 9-7 Registration Service Authority Subordinate Certifying Keys 3210

9.4.4.2 Registration Certification Authority 3211
A Registration Certification Authority issues certified keys to a registration service (a 3212
Registrar) which enable the service to engage in protocol interactions with Nemo clients, 3213
sign Octopus User/Domain Nodes, Octopus Links, Octopus Controls and to sign 3214
Registrar role attribute assertions. 3215
 3216
Marlin supports a model by which a domain of devices or client applications can be 3217
formulated to enable a rich user experience. In some circumstances this is accomplished 3218
by associating a content rendering application (or device) with a user account. The 3219
subordinate Registration Certification Authorities issues end-entity certificates to 3220
operational entities which manage these linkages. The certificates issued constrain the 3221
operational entities to use the issued certificate for the purpose of signing Octopus 3222
Nodes, Links and Controls. 3223
 3224
The end-entity signing certificates issued MUST have a certificate policy term that 3225
indicates the certified key is intended to be used to sign Controls and Links (id-cp-3226
octopus-marlin-signing-control and id-cp-octopus-marlin-signing-link, respectively). 3227
 3228
Section 3.3.4 describes the mechanism by which Octopus objects are signed. As noted, 3229
Controls may be indirectly signed either by reference or as a result of being contained by 3230
the object being directly signed. Implementations SHALL take this into consideration 3231
when selecting acceptable policy terms. For example, when a Control is covered by the 3232

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 115 of 154

signature over a Link object, the acceptable policy terms (for the Control) would be id-cp-3233
octopus-marlin-signing-link AND id-cp-octopus-marlin-signing-control. Because the 3234
signed Link object includes the Control, the identity of the Link signer (extracted from the 3235
Subject distinguished name of the signers X.509 certificate) is also the signer of the 3236
Control. 3237
 3238

Key Used to
Sign…

Basic
Constraint

Key Usage Certificate Policy Identifiers

Registration Service
Non-
Personality
Nodes, Links
and Controls

CA=FALSE digitalSignature id-cp-octopus-marlin-signing-node

id-cp-octopus-marlin-signing-link

id-cp-octopus-marlin-signing-
control

Table 9-8 Registration Service Certifying Keys 3239

This subordinate CA also issues certificates which may be used for protocol interactions 3240
and to sign Registration Service (aka Registrar) role attribute assertions. The DRM 3241
Object Provider and Domain Information Provider roles are asserted through a key 3242
authorized under this Certification Authority. 3243
 3244

Key Used to
Sign…

Basic
Constraint

Key Usage Certificate Policy
Identifiers

Registration Service
Keys for signing
the service role

CA=FALSE digitalSignature id-cp-nemo-marlin-
signing-service-role

Table 9-9 Role Signing Certificate 3245

3246

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 116 of 154

9.4.5 Content Licensing Trust Hierarchy 3247
The DRM Services Authority enables a trust hierarchy focused on content license 3248
issuance. The following diagram depicts the entities which fall under this portion of the 3249
trust topology. 3250

 3251
Figure 9-7 Content Licensing Trust Hierarchy 3252

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 117 of 154

9.4.5.1 Content License Services Authority 3253
The DRM Services Authority is used to authorize instances of a Marlin Content License 3254
Certification Authority. A Marlin Content License Certification Authority issues end-entity 3255
certificates used to operate a License Issuer service. That is, this authority is used to 3256
delegate to authorized entities the right to issue certificates which may be used to 3257
operate a License Issuer service. 3258
 3259

Certificates that
Authorize a
Subordinate CA
to Certify …

Basic Constraint Key Usage Certificate Policy
Identifiers

NEMO Protocol and Service Interaction

Keys for signing
the service role

CA=TRUE
pathLenConstraint>0

keyCertSign Id-cp-nemo-marlin-
signing-service-role

License Service

License
Service/Keys for
signing License

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-octopus-marlin-
signing-controller
id-cp-octopus-marlin-
signing-control

Table 9-10 Content License Services Authority Subordinate Certifying Keys 3260

The certificates issued to the Content License Certification Authority SHOULD include a 3261
nameConstraint extension to constrain the name-space of the subjects (License Service) 3262
it certifies. For example, the keys for signing controller objects might be constrained 3263
such that only License Services certified within a particular name-space may be 3264
authorized to sign the controls of a DRM object. 3265

9.4.5.2 Content License Certification Authority 3266
Content which is protected is issued a license by an authorized License Issuer service. 3267
An instance of a Content License Certification Authority issues X.509 Public Key 3268
certificates to License Issuer services. These certified keys are used by the License 3269
Issuer to sign elements of an Octopus license; Controller and Control objects. The 3270
Content License Certification Authority MAY issue a single certificate with multiple policy 3271
identifiers in the certificate policy. 3272
 3273
The end-entity signing certificates issued MUST have a certificate policy term that 3274
indicates the certified key is intended to be used to sign Controls and Controllers (id-cp-3275
octopus-marlin-signing-control and id-cp-octopus-marlin-signing-controller, respectively). 3276
 3277
Section 3.3.4 describes the mechanism by which Octopus objects are signed. As noted, 3278
Controls may be indirectly signed either by reference or as a result of being contained by 3279
the object being directly signed. Implementations SHALL take this into consideration 3280
when selecting acceptable policy terms. For example, when a Control is covered by 3281
secure digest of a referring Controller object, the acceptable policy terms would be id-cp-3282
octopus-marlin-signing-controller AND id-cp-octopus-marlin-signing-control. Because the 3283
signature over the Controller object includes a secure hash of the Control, the identity of 3284

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 118 of 154

the Controller signer (extracted from the Subject distinguished name of the signers 3285
X.509 certificate) is also the signer of the Control. 3286
 3287

Key Used to
Sign…

Basic
Constraint

Key Usage Certificate Policy Identifiers

License Issuer Service
Licenses
(Controller
Objects)

CA=FALSE digitalSignature id-cp-octopus-marlin-signing-
controller
id-cp-octopus-marlin-signing-
control

Table 9-11 License Issuer Service Signing Key(s) 3288

This subordinate CA also issues certificates which may be used for protocol interactions 3289
and to sign License Issuer role attribute assertions. 3290
 3291

Key Used to
Sign…

Basic
Constraint

Key Usage Certificate Policy Identifiers

License Issuer Service
Keys for signing
the service role

CA=FALSE digitalSignature Id-cp-nemo-marlin-signing-
service-role

Table 9-12 License Issuer Role Signing Certificate 3292

3293

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 119 of 154

 3294

9.4.6 Data Certification Trust Hierarchy 3295
The Marlin Data Certification Trust Hierarchy is responsible for the lifecycle and 3296
management of end-entity certificates used to assert authenticity of data relied upon by 3297
participants as part of a governance model, business model or service model. 3298
 3299
The following diagram depicts the certificates and certified keys which are managed 3300
under this topology. 3301

 3302
Figure 9-8 Data Certification Service Trust Hierarchy 3303

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 120 of 154

9.4.6.1 Data Certification Services Authority 3304
The Data Certification Services Authority may authorize instances of a two distinct 3305
Certification Authorities. These Certification Authorities are described separately so as to 3306
highlight their individual functions and characteristics. However, other factors which are 3307
out of scope for this document may influence whether this degree of separation is 3308
necessary. For example, compliance criteria or operational efficiencies may be best 3309
served by combining these CAs. This specification does not mandate separation or 3310
combination of the CAs but merely supplies an informative set of guidelines for 3311
constructing a trust topology. 3312
 3313
The Data Certification Services Authority may authorize instances of a Security 3314
Metadata Certification Service Certification Authority and/or Content Metadata 3315
Certification Service Certification Authority. 3316
 3317
Additionally this authority issues a certificate for the key used to sign indirect CRLs and 3318
Broadcast Key Blocks. 3319

Key Used to Sign… Basic
Constraint

Key Usage

Indirect CRL and
Broadcast Key Block

CA=FALSE cRLSign,
digitalSignature

Table 9-13 CRL and BKB Signing Certificate 3320

A Content Metadata Certification Service Certification Authority issues end-entity 3321
certificates used to operate a Content Metadata Certification Service. 3322
 3323
A Security Metadata Certification Service Certification Authority issues end-entity 3324
certificates used to operate Secure Metadata services such as the Security Data 3325
Provider defined by this specification. This specification also enables the operation of 3326
Data Certification Services. For example, Figure 9-8 depicts signing certificates for a 3327
Data Certification Service (DCS) and the Data Update Service (DUS.) 3328
 3329

Certificates
that Authorize
a Subordinate
CA to Certify …

Basic Constraint Key Usage Certificate Policy
Identifiers

Security Metadata Service NEMO Interactions

Keys for signing
the service role

CA=TRUE
pathLenConstraint>0

keyCertSign Id-cp-nemo-marlin-
signing-service-role

Keys for DCS Security Metadata

Keys for signing
Data
Certification
Assertion

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-nemo-marlin-
signing-data-certification

Keys for Data Update Service Security Metadata

Keys for signing CA=TRUE keyCertSign id-cp-nemo-marlin-

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 121 of 154

security
metadata items

pathLenConstraint>0 signing-security-metadata

Keys for Content Metadata

Keys for signing
content
metadata items

CA=TRUE
pathLenConstraint>0

keyCertSign id-cp-nemo-marlin-
signing-content-metadata

Table 9-14 Data Certification Services Authority Subordinate Certifying Keys 3330

9.4.6.2 Security Metadata Service Certification Authority 3331
The Data Certification Services Authority delegates, to a subordinate Security Metadata 3332
Certification Services Certification Authority, the authority to issue certificates used to 3333
sign attribute assertions and security metadata. Finally this CA issues certificates which 3334
are used to bind these security services to its role attribute 3335
 3336

Key Used to
Sign…

Basic
Constraint

Key Usage Certificate Policy Identifiers

Security Metadata Role Signing Certificate
Keys for signing
the service role

CA=FALSE digitalSignature Id-cp-nemo-marlin-signing-
service-role

Keys for Data Certification Service
Keys for signing
DCS Assertion

CA=FALSE digitalSignature id-cp-nemo-marlin-signing-data-
certification

Keys for Data Update Service
Keys for signing
security
metadata items

CA=FALSE digitalSignature id-cp-nemo-marlin-signing-
security-metadata

Table 9-15 End-Entity Certificates for Security Metadata Services 3337

9.4.6.3 Content Metadata Certification Service Certification Authority 3338
The Data Certification Services authority delegates authority to a subordinate Content 3339
Metadata Certification Services Certification Authority to issue certificates used to 3340
ensure authenticity of metadata associated with content. The subordinate Content 3341
Metadata Certification Service CA issues end-entity certificates to instances of a service 3342
which provides this assurance (e.g. a content packager.) 3343
 3344
The certificates issued to this entity MUST have a certificate policy term that indicates 3345
the certified key is intended to be used to sign content metadata (id-cp-nemo-marlin-3346
signing-content-metadata.) 3347
 3348

Key Used to
Sign…

Basic
Constraint

Key Usage Certificate Policy Identifiers

Keys for Content Metadata

Keys for signing
content

CA=FALSE digitalSignature id-cp-nemo-marlin-signing-
content-metadata

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 122 of 154

Key Used to
Sign…

Basic
Constraint

Key Usage Certificate Policy Identifiers

metadata items

Table 9-16 End-Entity Certificates for signing content metadata 3349

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 123 of 154

10 File Format for Marlin Content 3350
In order to ensure at least a minimal set of interoperability between implementations of 3351
core system specifications, Marlin specifies a set of content file format profiles in terms 3352
of containers, media encryption mechanisms, codecs profiles, and metadata structures. 3353
However, the media file formats which Marlin supports change periodically and it is best 3354
to specify these formats independently of the core system specification. For that reason 3355
the supported media file formats are defined in a separate supporting specification, 3356
Marlin – File Formats Specification [MFF1.0]. 3357

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 124 of 154

11 Marlin Usage Rules 3358
 3359
Marlin Usage Rules are encoded in Octopus Controls. However: 3360

• Certain usage rules may require support of a protocol between two participating 3361
Marlin DRM Clients, a sequence of preliminary operations to prepare for the 3362
execution of a Control’s perform method (see Move Action in Section 11.1.) 3363

• Certain usage rules may require calling an application to perform some obligation 3364
after the Control’s perform method has executed, including executing callbacks 3365
to the Octopus engine 3366

 3367
Controls generally reference external objects such as Links, Node attributes, or state 3368
objects that are set by other System Calls or Controls. 3369
 3370
In order to be interoperable, all core system implementations MUST implement the 3371
Octopus Controls specifications ([8pus] §3). This should enable all implementations to 3372
support such usage rules as: 3373
 3374
Actions High-Level Conditions
Play Unconstrained

Start/End Date
Action Counts (per device, not domain)
N times For a Period of H hours after the 1st Play
Active User/Domain/Subscription link check
Any combination of the above

 3375
In addition, all core system implementations SHOULD implement the following Marlin 3376
defined actions: 3377

• Move (see Section 11.1) 3378
• Copy (see Section 11.1) 3379
• Export to DTCP 3380
• Export to CPRM 3381
• Export to VCPS 3382
• Export to MG-R 3383
• Export to Foreign DRM 3384

 3385
[MEXP] defines the parameters required for a targeted export technology. 3386
 3387
A license MAY indicate deviations from the default set of output control requirements. 3388
This SHALL be signaled using the mechanism defined by the Octopus Controls 3389
specification ([8pus] §3). All core system implementations SHOULD support the 3390
parameters defined in [MOCS1.0] to enable overriding default output controls. 3391
 3392
Additional Usage Rules and supporting Actions and Obligations may be defined for 3393
individual Marlin Delivery System Specifications. 3394

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 125 of 154

11.1 Move and Copy Actions 3395
Moving and copying content to another device is supported using the Transfer action 3396
defined in the Octopus Standard Control Protocol 1.0 ([8pus] §3), in conjunction with the 3397
transfer protocol defined in Section 5.7.6 of this specification. 3398

In addition to the standard Transfer action parameters, this specification defines the 3399
following parameter (visible under the host object /Octopus/Action/Parameters, as 3400
specified in [8pus] §3): 3401

• Sink/Proximity/LastProbe = date of the most recent successful proximity probe from 3402
Source to Sink 3403

11.1.1 Theory of Operation (Informative) 3404

11.1.1.1 Overview 3405
This mechanism may be extended to support other types of control, but is designed to 3406
support the following basic features: 3407

• Before the Transfer operation, a content file C is “bound” to the Source device 3408
SRC (that is, the license L for C allows SRC to use the Content Key CK carried in 3409
L). The same license L does not allow the Sink device SNK to use CK). 3410

• The content file C can be transferred to SNK as-is, without any special 3411
protection. This means that this Transfer operation does not require that the 3412
content file be re-encrypted. 3413

• After the Transfer operation, the license L does not allow SRC to use CK 3414
anymore. The same license L allows SNK to use CK. The Control in L does not 3415
need to be re-generated or re-signed. 3416

• This Transfer protocol can at least support the following policy: SRC can transfer 3417
C to SNK if: 3418

o L allows SRC to use CK (the license is “valid” on SRC) and SNK is a 3419
member of the same domain as SRC. 3420

Or 3421

o L allows SRC to use CK and SNK is in proximity of SRC 3422
 3423

11.1.1.2 License Elements 3424
The license L for a content file C that supports that type of Transfer semantics is 3425
constructed as follows: 3426

• C is encrypted with CK 3427

• The ContentKey Object (CKO) contains CK encrypted with the Scuba Sharing key 3428
SSK[SRC] of the Source device SRC’s personality node. 3429

• The Control is signed by the original Control creator (the import device most likely). 3430

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 126 of 154

• The Control CTRL contains at least the Play and the Transfer actions. 3431

o The Play action is implemented in a manner similar to the following rule: 3432

 Play granted only if the SeaShell ([8pus] §7) state object 3433
/XXX/ContentTokens/C exists (where /XXX/ is some path prefix that 3434
represents a container in the SeaShell database into which the control 3435
can write). 3436

o The Transfer action is implemented in a manner similar to the following rule: 3437

 If the date of the last proximity probe is within acceptable time of the 3438
current date then: 3439

• Return a GRANTED status with an Obligation to run an Agent 3440
A1 with parameter P1 and context CTX1 on the Sink and a 3441
Callback request to call back Method CLBK when Agent A1 3442
has been run on the Sink, with the result of the agent as input 3443
to the callback. 3444

Else 3445

• Return a GRANTED status with an Obligation to run an Agent 3446
A1 with parameter P2 on the Sink, and a Callback request to 3447
call back Method CLBK when Agent A1 has been run on the 3448
Sink, with the result of the agent as input to the callback. 3449

 In the callback method CLBK: 3450

• Read the agent’s result from our input parameter 3451

• If the result indicates a success, then: 3452

o delete the SeaShell state object 3453
/XXX/ContentTokens/C and return a GRANTED status 3454
with no further callback or obligation. The protocol 3455
ends. 3456

else 3457

o The result indicates a failure, return a DENIED status 3458
with the appropriate extended status parameters. 3459

 The Agent A1 is a control that takes an input parameter indicating 3460
whether a certain domain membership is required or not (the domain 3461
membership node Id is included in the input parameter). 3462

• Require that the context host object CTX1 exist (this context 3463
host object MUST be set by the host as specified in the 3464
Transfer service protocol specification). Fail if the required 3465
context does not exist 3466

• If a domain membership is required, the control checks that 3467
the device in which it is running is a member of the specified 3468

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 127 of 154

domain (typically, checks for a link reachability, and possibly 3469
some other conditions). If the device is not a member of the 3470
domain, a failure status is returned 3471

• Create the SeaShell state object XXX/ContentTokens/C 3472

• Return a success result 3473
 3474

11.1.1.3 Sequence of Operations 3475

a) The content file C is made available to the Sink. 3476

b) The Sink initiates a Transfer protocol for content C with the Source. 3477

c) The Sink provides its own node information (public node object, including 3478
signature and certificates) as well as the license bundle that governs C. The sink 3479
also optionally indicates whether it requires a re-encryption of the content keys or 3480
not. 3481

d) The Source initiates the Transfer action on the license L for C with the sink’s 3482
node info and proximity status as action input parameters by calling the Perform 3483
method. 3484

e) When the return status of the Perform method indicates the initial GRANTED 3485
status with the obligation to run an Agent A1 on the sink, the Source sends A1 to 3486
the Sink and waits for the result. 3487

f) Upon receiving the result of A1 from the Sink, the Source calls back the callback 3488
method specified in the Callback return parameter of the previous step, passing 3489
the result of the agent as an input parameter. 3490

g) At this point, the callback method has returned an extended status block 3491
indicating if the protocol is a success or a failure. We assume it is a success. 3492

h) The extended status block is sent to the sink along with the re-encrypted content 3493
keys if the status block indicates a success and the content keys were required in 3494
the request. 3495

 3496

11.1.1.4 Agent 3497
The agent included in the control for the license L has its own signature, created by the 3498
same entity as the one that created and signed the Controller for the license. This agent 3499
should be carried as an external extension of the Control object. 3500
 3501
 3502

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 128 of 154

12 Profiles 3503
This specification defines a variety of mechanisms by which system implementations 3504
can interact. In order to allow for flexibility and future functionality we may have defined 3505
multiple ways to achieve a similar functionality. However, interoperability may suffer if we 3506
do not narrow the choices. The following sections prescribe specific implementation 3507
guidance to aid developers and deployers. 3508

12.1 Cryptographic Algorithm Profiles 3509

This subsection prescribes which cryptographic, encoding and transformation algorithms 3510
are to be utilized. 3511

12.1.1 Hashing (Digest) algorithms: 3512
All implementations of Marlin SHALL support the following hashing algorithms: 3513

• SHA1 [SHA1] 3514
• SHA256 [SHA256] 3515

12.1.2 Keyed-Hash Message Authentication Code algorithms 3516
All implementations of Marlin SHALL support the following HMAC algorithm: 3517

• Keyed-HMAC [hmacwithsha1] 3518

12.1.3 Public Key algorithms 3519
All implementations of Marlin SHALL support the following public key algorithms and key 3520
sizes: 3521

• RSA 1.5 with 1024 and 2048 keys [RSA-1_5] 3522
• RSA-OAEP [RSA-1_5]] 3523

12.1.4 Signature Hash algorithms 3524
All implementations of Marlin SHALL support the following hash functions in combination 3525
with the above public key algorithms: 3526

• SHA1 3527
• SHA256 3528

 3529
The hash function of the signature algorithm MUST be consistent with the hash 3530
algorithm used in computing the individual digests. For example, if the signature 3531
algorithm is RSA with SHA1 then the digest method must also be SHA1. 3532

12.1.5 Symmetric key algorithms 3533
All implementations of Marlin SHALL support the following algorithms: 3534

• AES 128 bit symmetric key [AES] in CBC mode [AES-MODES] 3535
• AES 128 bit symmetric key [AES] in CTR mode [AES-MODES, ISMACryp] 3536

§10.0. 10

10 Note 128 bit AES in counter mode is only required by applications which encrypt/decrypt
content.

 3537

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 129 of 154

12.1.6 Canonicalization 3538
All implementations SHALL implement the following canonicalization methods 3539

• [xml-exc-c14n] 3540

12.2 XML Digital Signature Profile 3541

12.2.1 <ds:Signature> Element 3542
All signatures MUST be detached. There MAY be multiple signatures covering the same 3543
object. 3544
 3545
The <ds:Signature> block MUST contain: 3546

• A <ds:SignedInfo> element 3547
• A <ds:SignatureValue> element 3548
• A <ds:KeyInfo> element 3549

12.2.2 <ds:SignedInfo> 3550
The <ds:SignedInfo> MUST embed the following elements: 3551

12.2.2.1 <ds:CanonicalizationMethod> 3552
The <ds:CanonicalizationMethod> element is empty and its ds:Algorithm attribute MUST 3553
signal the use of exclusive XML canonicalization using the identifier defined in [xml-3554
exc-c14n] §4. 3555
 3556

12.2.2.2 <ds:SignatureMethod> 3557
When a keyed HMAC algorithm is used for computing the signature, the 3558
<ds:SignatureMethod> element SHALL be empty and implementations SHALL ignore 3559
any spurious child elements carried in the <ds:SignatureMethod> element. The 3560
ds:Algorithm attribute of the <ds:SignatureMethod> element SHALL identify the 3561
signature algorithm and the hash function it utilizes. The hash functhion MUST be either 3562
SHA1 or SHA256. The identifiers are specified in [xmldsig] and [RFC4051], respectively. 3563
As a convenience to the reader these identifiers are repeated here: 3564
 http://www.w3.org/2000/09/xmldsig#hmac-sha1 3565
 http://www.w3.org/2001/04/xmldsig-more#hmac-sha256 3566
 3567
When an RSA based signature algorithm is used the ds:Algorithm attribute SHALL 3568
identify the signature algorithm and the hash function it utilizes. The hash functhion 3569
MUST be either SHA1 or SHA256. The identifiers are specified in [xmldsig] and 3570
[RFC4051], respectively. As a convenience to the reader these identifiers are repeated 3571
here: 3572

http://www.w3.org/2000/09/xmldsig#rsa-sha1 3573
 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 3574
 3575
The hash function of the signature algorithm MUST be consistent with the hash 3576
algorithm used in computing the individual digests. For example, if the signature method 3577
is RSA with SHA1 then the digest method must also be SHA1. 3578

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 130 of 154

12.2.2.3 <ds:Reference> 3579
There MAY be one or more <ds:Reference> elements inside the <ds:SignedInfo> block 3580
if more than one object is signed by the same key. For example, signing an Octopus 3581
Control and an Octopus Controller with the same key. 3582

 3583
When signing an Octopus object, the value of the ds:URI attribute MUST be the oct:Id 3584
attribute of the element carrying the encoding of the referenced Octopus object. 3585
NOTE: 3586

• It MUST be done this way instead of using the Uid attribute (real ID of the 3587
Octopus objects) because the production of xs:ID is not compatible with the 3588
URN syntax (xs:ID is defined as a non-colonized name.) 3589

 3590
When signing a local XML element the value of the ds:URI attribute MUST be the value 3591
of the element’s xs:ID-typed attribute (Note that the Octopus schema names this 3592
attribute oct:Id.) 3593

 3594

When a reference is to an Octopus object, the digest in the reference MUST be 3595
the canonical byte sequence of the Octopus object as specified in [8pus] §5. 3596

 3597
The canonicalization of Octopus objects MUST be indicated in a <ds:Tranforms> 3598
element. An example follows: 3599

 3600
<ds:Tranforms>

<ds:Transform
 Algorithm="http://www.octopus-drm.com/octopus/specs/cbs-1_0"/>

</ds:Tranforms>
 3601

No other <ds:Tranform> is allowed for Octopus object references. 3602
 3603

The canonicalization for all other signed elements MUST use the exclusive 3604
canonicalization transform defined in [xml-exc-c14n]. An example follows: 3605

 3606
<ds:Tranforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</ds:Tranforms>

12.2.2.3.1 <ds:DigestMethod> 3607
The <ds:DigestMethod> element SHALL be empty and its ds:Algorithm attribute 3608
SHALL identify the hash function it utilizes. The hash functhion MUST be either SHA1 or 3609
SHA256. The identifiers are specified in [xmldsig] and [xmlenc], respectively. As a 3610
convenience to the reader these identifiers are repeated here: 3611

http://www.w3.org/2000/09/xmldsig#sha1 3612
 http://www.w3.org/2001/04/xmlenc#sha256 3613
 3614
The hash function of the signature method MUST be consistent with the hash algorithm 3615
used in computing the individual digests. For example, if the signature algorithm is RSA 3616
with SHA1 then the digest method must also be SHA1. 3617

12.2.2.3.2 <ds:DigestValue> 3618

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 131 of 154

 3619
The <ds:DigestValue> element MUST contain the base64 encoded value of the digest. 3620

12.2.3 <ds:SignatureValue> 3621
The signature value MUST be the base64 encoded value of the signature of the 3622
canonicalized ([xml-exc-c14n]) <ds:SignedInfo> element with the key described in the 3623
<ds:KeyInfo> element. 3624

12.2.4 <ds:KeyInfo> 3625

12.2.4.1 HMAC Signatures 3626
When signing with HMAC, the <ds:KeyInfo> element MUST have a single child, 3627
<ds:KeyName>, that indicates the key used for computing the HMAC signature. The 3628
guidance given in Section 12.2.2.2 regarding HMAC algorithm identification SHALL be 3629
followed. 3630
 3631
For HMAC signatures over Octopus objects this identifier MUST be the oct:uid attribute 3632
of the Octopus secret key object used to compute the signature. 3633
 3634
Example: 3635

 3636
<ds:KeyInfo>
 <ds:KeyName>urn:x-octopus:secret-key:1001</ds:KeyName>
</ds:KeyInfo>

12.2.4.2 Public Key Signatures 3637
When signing with a public key algorithm, the public key used to verify the signature 3638
MUST be carried in an X.509 v3 certificate, and MUST be accompanied by other 3639
certificates necessary to complete the certificate path to a trust anchor. 3640

 3641
These certificates MUST be carried, encoded in base64, in <ds:X509Certificate> 3642
elements. These <ds:X509Certificate> elements are embedded in an <ds:X509Data> 3643
element and this <ds:X509Data> element MUST be a child of the <ds:KeyInfo> element. 3644
The <ds:X509Certificate> elements MUST appear in sequential order, starting from the 3645
end-entity’s signing key certificate. The certificate of the trust anchor SHOULD be 3646
omitted (since it can not necessarily be determined to be trusted.) 3647
 3648
The guidance given in Section 12.2.2.2 regarding Public Key algorithm identification 3649
SHALL be followed. 3650
 3651
<ds:KeyInfo>
 <ds:X509Data>
 <!-- cert of the end-entity’s signing public key -->
 <ds:X509Certificate>MIICh...</ds:X509Certificate>
 <!-- intermediate cert to the trust anchor -->
 <ds:X509Certificate>MIICo...</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 132 of 154

12.3 NEMO Profile for Basic Secure Messaging 3652

This Profile defines a profile of Basic Secure Messaging defined in [NEMO] §3. 3653
 3654
The full security version of the NEMO basic secure messaging protocol provides 3655
confidentiality, integrity, and freshness protection of NEMO service request, response, 3656
and confirmation messages. The balance of this section focuses on defining a profile of 3657
these messages to simplify implementations and to further assure interoperability. 3658

12.3.1 Notation 3659
The entities &nemo; &nemoc; and nemosec; are defined so as to provide shorthand 3660
identifiers for URIs defined in this specification. For example 3661

&nemosec;/Element 3662
corresponds to 3663

http://nemo.intertrust.com/2005/10/security/Element 3664
This entity is used as a shorthand notation in this specification; however, the use of 3665
entities in NEMO is specified in NEMO Message Bindings [NEMO] §2. 3666

12.3.2 Request Message 3667

12.3.2.1 SOAP Header 3668

12.3.2.1.1 Action (Informative) 3669
The <wsa:Action> element shall contain a same value specified in a soapAction attribute 3670
of the corresponding WSDL. 3671

12.3.2.1.2 Message ID for the Message 3672
The <S11:Header> element SHALL contain a <wsa:MessageID> element. 3673

12.3.2.1.3 Correlation to Request Message 3674
The <S11:Header> element SHALL NOT contain a <wsa:RelatesTo> element. 3675

12.3.2.2 Security Header 3676
In this profile, the security header SHALL also contain the requestor’s long-term public 3677
message encryption key certificate, SAML assertions [SAML1.1] and a profile identifier 3678
in addition to elements which are described in [NEMO] §3.1.4.1.1.1. 3679
 3680
The Marlin System Root SHALL NOT be included in PKIPath certificate chains. Trust 3681
Anchors SHALL NOT be included in PKIPath certificate chains. 3682

12.3.2.2.1 Protocol Identifier 3683
The <nemosec:ProtocolDeclaration> element SHALL include a <nemosec:Step> 3684
element with Type attribute containing the string value defined in [NEMO] §3.1.4.1.1.1.1. 3685
The <nemosec:Step> element SHALL NOT include an Index attribute. 3686

12.3.2.2.2 Profile 3687

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 133 of 154

The <wsse:Security> element SHALL contain a <nemosec:Profile> element to signal the 3688
profile defined by this document. Hence, the <nemosec:Profile> element SHALL include 3689
a URI attribute having the value 3690

urn:marlin:core:1.0:nemo:protocol:profile:1 3691
The <nemosec:Profile> element SHALL contain a nemosec:Usage attribute with the 3692
value defined in [NEMO] §3.1.3.5.6. The <nemosec:Profile> element SHALL be the 3693
immediate sibling element of the <nemosec:ProtocolDeclaration> element. 3694

12.3.2.2.3 Requestor’s Timestamp 3695
The <wsu:Timestamp> element SHALL contain a nemosec:Usage attribute with the 3696
value defined in [NEMO] §3.1.4.1.1.1.2. The <wsu:Expire> element SHALL NOT be 3697
used in <wsu:Timestamp> element. 3698

12.3.2.2.4 Requestor’s Nonce 3699
The <wsse:Nonce> element SHALL contain a nemosec:Usage attribute with the value 3700
defined in [NEMO] §3.1.4.1.1.1.3. 3701

12.3.2.2.5 Responder’s Identifier 3702
The <nemosec:ToNode> element SHALL contain a nemosec:Usage attribute with the 3703
value defined in [NEMO] §3.1.4.1.1.1.5. 3704

12.3.2.2.6 Requestor’s Identifier 3705
The <wsse:Security> element SHALL NOT contain a <nemosec:FromNode> element. 3706

12.3.2.2.7 Self-encrypted Message Key 3707
The <wsse:BinarySecurityToken> element SHALL contain a ValueType attribute as 3708
defined in [NEMO] §3.1.3.5.7. The <wsse:BinarySecurityToken> element SHALL contain 3709
a nemosec:Usage attribute with a value defined in [NEMO] §3.1.4.1.1.1.6. Element 3710
encryption SHALL include the <wsse:BinarySecurityToken> element and its contents. 3711

12.3.2.2.8 Requestor’s Public Signing Key Certificate Chain 3712
The <wsse:Security> element SHALL contain a <wsse:BinarySecurityToken> with a 3713
ValueType attribute of 3714
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-3715
1.0#X509PKIPathv1 3716
 3717
In other words, following value type SHALL NOT be used. 3718
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-3719
1.0#PKCS7 3720
 3721
The <wsse:BinarySecurityToken> element SHALL contain a nemosec:Usage attribute 3722
with a value defined in [NEMO] §3.1.4.1.1.1.7. 3723

12.3.2.2.9 Requestor’s Public Encryption Key Certificate Chain 3724
The <wsse:Security> element SHALL contain a <wsse:BinarySecurityToken> with a 3725
ValueType attribute of 3726
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-3727
1.0#X509PKIPathv1 3728

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 134 of 154

 3729
In other words, following value type SHALL NOT be used. 3730
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-3731
1.0#PKCS7 3732
 3733
The <wsse:BinarySecurityToken> element SHALL contain a nemosec:Usage attribute 3734
with a value defined in [NEMO] §3.1.4.1.1.1.8. 3735

12.3.2.2.10 Requestor’s Encrypted Message Encryption Key 3736
Requestor’s Message Encryption Key SHALL be used to encrypt <S11:Body> element 3737
and <ds:Signature> element. Element encryption SHALL include the <ds:Signature> 3738
element and its contents. Element encryption SHALL include all the contents of the 3739
<S11:Body> element. The Message Encryption Key SHOULD be unique for each 3740
message (Request, Response, and Confirmation) of the transaction. However, a 3741
message processor need not verify the uniqueness of the keys across the transaction. 3742

12.3.2.2.11 Requestor’s role attribute assertions 3743
Requestor’s role attribute assertion required by the service policy SHALL be placed as a 3744
direct child element of a <wsse:Security> element, and SHALL be referenced from a 3745
single <wsse:KeyIdentifier> element in a <wsse:SecurityTokenReference> element as 3746
specified in [WS-SECSAML] §3.3. Thus, when multiple SAML Assertions are sent in a 3747
request message, multiple <wsse:SecurityTokenReference> elements are used to refer 3748
to respective SAML Assertions. 3749
 3750
The <wsse:SecurityTokenReference> element that references a SAML attribute 3751
assertion that asserts a NEMO node role SHALL contain a nemosec:Usage attribute 3752
with the value defined in [NEMO] §3.1.3.5.8. 3753

12.3.2.2.12 Signature 3754
In addition to elements described in [NEMO] §3.1.4.1.1.1.10, the signature SHALL cover 3755
the following elements 3756

• Profile 3757
• Message ID for this message 3758
• Requestor’s public encryption key certificate chain 3759
• <S11:Body> 3760

 3761
The <ds:Signature> element SHALL include a <ds:KeyInfo> element. The <ds:KeyInfo> 3762
element SHALL include a <wsse:SecurityTokenReference> element which refers to the 3763
requestor's signing key certificate. This reference MUST use <wsse:Reference> element. 3764
The <wsse:Reference> element SHALL contain URI attribute which refers to the 3765
<wsse:BinarySecurityToken> by a bare name. 3766

12.3.2.3 Processing Rules 3767
In addition to the processing rules defined in [NEMO] §3.1.4.1.1.2, 3768

• The responder SHALL verify the validity of the requestor’s certificate. 3769
• The responder SHALL check that the NEMO node ID included in the requestor’s 3770

role attribute assertion is identical to a requestor’s node ID included in the 3771
requestor’s signing certificate. 3772

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 135 of 154

• The responder SHALL verify the requestor has the proper role attribute (see 3773
Table 4-1). 3774

12.3.3 Response Message 3775

12.3.3.1 SOAP Header 3776

12.3.3.1.1 Action (Informative) 3777
The <wsa:Action> element shall contain a same value specified in a soapAction attribute 3778
of the corresponding WSDL. 3779

12.3.3.1.2 Message ID for the Message 3780
The <S11:Header> element SHALL contain a <wsa:MessageID> element. 3781

12.3.3.1.3 Correlation to Request Message 3782
The <S11:Header> element SHALL contain a <wsa:RelatesTo> element. The 3783
<RelatesTo> element SHALL include RelationshipType attribute having the value 3784
 3785

&nemo;/addressing/originatesFrom 3786
 3787
and SHALL contain a value which is identical to the value contained in the Message ID 3788
element of the request message. 3789

12.3.3.2 Security Header 3790
In this profile, the security header SHALL also contain a profile identifier in addition to 3791
elements which are described in [NEMO] §3.1.4.1.2.1. 3792
 3793
The Marlin System Root SHALL NOT be included in PKIPath certificate chains. Trust 3794
Anchors SHALL NOT be included in PKIPath certificate chains. 3795

12.3.3.2.1 Protocol Identifier 3796
The <nemosec:ProtocolDeclaration> element SHALL include a Step element with Type 3797
attribute containing the string value defined in [NEMO] §3.1.4.1.2.1.1. The Step element 3798
SHALL NOT include an

12.3.3.2.2 Profile 3802

 Index attribute. If a fault occurs related to the security protocol 3799
defined in [NEMO] §3, the value of the Type attribute SHALL be set to "fault". 3800
Otherwise, the value of the Type attribute SHALL be set to "response". 3801

The <wsse:Security> element SHALL contain a < nemosec:Profile> element to signal 3803
the profile defined in this document. Hence the <nemosec:Profile> element SHALL 3804
include a URI attribute having the value 3805
 3806

urn:marlin:core:1.0:nemo:protocol:profile:1 3807
 3808
The <nemosec:Profile> element SHALL contain a nemosec:Usage attribute with the 3809
value defined in [NEMO] §3.1.3.5.6. The <nemosec:Profile> element SHALL be the 3810
immediate sibling element of the <nemosec:ProtocolDeclaration> element. 3811

12.3.3.2.3 Responder’s Timestamp 3812

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 136 of 154

The <wsu:Timestamp> element SHALL contain a nemosec:Usage attribute with the 3813
value defined in [NEMO] §3.1.4.1.2.1.2. The <wsu:Expire> element SHALL NOT be 3814
used in <wsu:Timestamp> element. 3815

12.3.3.2.4 Requestor’s Nonce 3816
The <wsse:Nonce> element SHALL contain a nemosec:Usage attribute with the value 3817
defined in [NEMO] §3.1.4.1.2.1.6. 3818

12.3.3.2.5 Responder’s Nonce 3819
The <wsse:Nonce> element SHALL contain a nemosec:Usage attribute with the value 3820
defined in [NEMO] §3.1.4.1.2.1.7. 3821

12.3.3.2.6 Responder’s Identifier 3822
The <wsse:Security> element SHALL NOT contain a <nemosec:FromNode> element. 3823

12.3.3.2.7 Requestor’s Identifier 3824
The < nemosec:ToNode> element SHALL contain a nemosec:Usage attribute with the 3825
value defined in [NEMO] §3.1.4.1.2.1.4. 3826

12.3.3.2.8 Self-encrypted Message Key 3827
The <wsse:BinarySecurityToken> element SHALL contain a ValueType attribute as 3828
defined in [NEMO] §3.1.3.5.7. The <wsse:BinarySecurityToken> element SHALL 3829
contain a nemosec:Usage attribute with a value defined in [NEMO] §3.1.4.1.2.1.5. 3830
Element encryption SHALL include the <wsse:BinarySecurityToken> element and its 3831
contents. 3832

12.3.3.2.9 Responder’s Public Signing Key Certificate Chain 3833
The <wsse:Security> element SHALL NOT contain a <wsse:BinarySecurityToken> for a 3834
responder’s public signing key certificate. 3835

12.3.3.2.10 Responder’s Encrypted Message Encryption Key 3836
Responder’s Message Encryption Key SHALL be used to encrypt <S11:Body> element 3837
and <ds:Signature> element. Element encryption SHALL include the <ds:Signature> 3838
element and its contents. Element encryption SHALL include all the contents of the 3839
<S11:Body> element. The Message Encryption Key SHOULD be unique for each 3840
message (Request, Response, and Confirmation) of the transaction. However, a 3841
message processor need not verify the uniqueness of the keys across the transaction. 3842
 3843
The <xenc:EncryptedKey> element SHALL include <ds:KeyInfo> element. The 3844
<ds:KeyInfo> element SHALL include <wsse:SecurityTokenReference> element which 3845
refers to the requestor’s encryption key certificate by using <wsse:KeyIdentifier> element. 3846
The <wsse:KeyIdentifier> element SHALL use the Subject Key Identifier to reference the 3847
X.509 certificate as defined in [WS-SECX509] §3.2.1. The ValueType attribute SHALL 3848
signal this with the value defined in [WS-SECX509-ER] §5. 3849

12.3.3.2.11 Signature 3850
In addition to elements described in [NEMO] §3.1.4.1.2.1.10, the signature SHALL cover 3851
the following elements: 3852

• Profile 3853

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 137 of 154

• Message ID for this message 3854
• Correlation to request message 3855
• <S11:Body> 3856

 3857
When <nemoc:FaultDetails> element is included in a message and integrity protection 3858
is applied to the message the <nemoc:FaultDetails> element SHALL be signed. 3859
 3860
The <ds:Signature> element SHALL include a <ds:KeyInfo> element. The <ds:KeyInfo> 3861
element SHALL include a <wsse:SecurityTokenReference> element which refers to the 3862
responder’s signing key certificate. This reference MUST use <wsse:KeyIdentifier> 3863
element. The <wsse:KeyIdentifier> element SHALL use the Subject Key Identifier to 3864
reference the X.509 certificate as defined in [WS-SECX509] §3.2.1. The ValueType 3865
attribute SHALL signal this with the value defined in [WS-SECX509-ER] §5. 3866

12.3.3.3 Processing Rules 3867
 In addition to the processing rules defined in [NEMO] §3.1.4.1.2.2, 3868

• The requestor SHALL verify the validity of the responder’s certificate. 3869
• The requestor SHALL verify that the NEMO node ID in the responder’s role 3870

attribute assertion identifies the same subject as is indicated in the responder’s 3871
certificate. 3872

• The requestor SHALL verify the responder has the proper role attribute (see 3873
Table 4-1). 3874

12.3.3.4 Fault Response 3875
In the event a fault is returned in the response, the fault message MUST follow the rules 3876
given in Sections 12.3.3.1.2, 12.3.3.1.3 and 12.3.3.2.11. 3877

12.3.4 Confirmation Message 3878

12.3.4.1 SOAP Header 3879

12.3.4.1.1 Action (Informative) 3880
The <wsa:Action> element shall contain a same value specified in a soapAction attribute 3881
of the corresponding WSDL. 3882

12.3.4.1.2 Message ID for the Message 3883
The <S11:Header> element SHALL contain a <wsa:MessageID> element. 3884

12.3.4.1.3 Correlation to Request Message 3885
The <S11:Header> element SHALL contain a <wsa:RelatesTo> element. The 3886
<wsa:RelatesTo> element SHALL include RelationshipType attribute having the value 3887
 3888

&nemo;/addressing/originatesFrom 3889
 3890
and SHALL contain a value which is identical to the value contained in the Message ID 3891
of the request message. 3892

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 138 of 154

12.3.4.2 Security Header 3893
In addition to elements which are described in [NEMO] §3.1.4.1.3.1, the security header 3894
SHALL contain a profile identifier. 3895
 3896
The Marlin System Root SHALL NOT be included in PKIPath certificate chains. Trust 3897
Anchors SHALL NOT be included in PKIPath certificate chains. 3898

12.3.4.2.1 Protocol Identifier 3899
The <nemosec:ProtocolDeclaration> element SHALL include a Step element with Type 3900
attribute containing the string value defined in [NEMO] §3.1.4.1.3.1.1. 3901
The Step element SHALL NOT include Index attribute. 3902

12.3.4.2.2 Profile 3903
The <wsse:Security> element SHALL contain a < nemosec:Profile> element to signal 3904
the profile defined in this document. Hence, the <nemosec:Profile> element SHALL 3905
include an URI attribute having the value 3906
 3907

urn:marlin:core:1.0:nemo:protocol:profile:1 3908
 3909
The <nemosec:Profile> element SHALL contain a nemosec:Usage attribute with the 3910
value defined in [NEMO] §3.1.3.5.6. 3911
The <nemosec:Profile> element SHALL be the immediate sibling element of the 3912
<nemosec:ProtocolDeclaration> element. 3913

12.3.4.2.3 Requestor’s Timestamp 3914
The <wsu:Timestamp> element SHALL contain a nemosec:Usage attribute with the 3915
value defined in [NEMO] §3.1.4.1.3.1.2. The <wsu:Expire> element SHALL NOT be 3916
used in <wsu:Timestamp> element. 3917

12.3.4.2.4 Responder’s Nonce 3918
The <wsse:Nonce> element SHALL contain a nemosec:Usage attribute with the value 3919
defined in [NEMO] §3.1.4.1.3.1.3. 3920

12.3.4.2.5 Requestor’s Identifier 3921
The <wsse:Security> element SHALL NOT contain a <nemosec:FromNode> element. 3922

12.3.4.2.6 Responder’s Identifier 3923
The < nemosec:ToNode> element SHALL contain a nemosec:Usage attribute with the 3924
value defined in [NEMO] §3.1.4.1.3.1.5. 3925

12.3.4.2.7 Self-encrypted Message Key 3926
The <wsse:BinarySecurityToken> element SHALL contain a ValueType attribute as 3927
defined in [NEMO] §3.1.3.5.7. The <wsse:BinarySecurityToken> element SHALL 3928
contain a nemosec:Usage attribute with a value defined in [NEMO] §3.1.4.1.3.1.6. 3929
Element encryption SHALL include the <wsse:BinarySecurityToken> element and its 3930
contents. 3931

12.3.4.2.8 Requestor’s Public Signing Key Certificate Chain 3932

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 139 of 154

The <wsse:Security> element SHALL contain a <wsse:BinarySecurityToken> with a 3933
ValueType attribute of 3934
 3935
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-3936
token-profile-1.0#X509PKIPathv1 3937
 3938
In other words, the following value type SHALL NOT be used. 3939
 3940
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-3941
token-profile-1.0#PKCS7 3942
 3943
The <wsse:BinarySecurityToken> element SHALL contain a nemosec:Usage attribute 3944
with a value defined in [NEMO] §3.1.4.1.3.1.8. 3945

12.3.4.2.9 Requestor’s Encrypted Message Encryption Key 3946
Requestor’s Message Encryption Key SHALL be used to encrypt the child elements of 3947
the <S11:Body> and <ds:Signature> element. Element encryption SHALL include the 3948
<ds:Signature> element and its contents. Element encryption SHALL include all the 3949
contents of the <S11:Body> element. The Message Encryption Key SHOULD be unique 3950
for each message (Request, Response, and Confirmation) of the transaction. However, 3951
a message processor need not verify the uniqueness of the keys across the transaction. 3952

12.3.4.2.10 Signature 3953
In addition to elements described in [NEMO] §3.1.4.1.3.1.9, the signature SHALL cover 3954
the following elements: 3955

• Profile 3956
• Message ID for this message 3957
• Correlation to request message 3958
• <S11:Body> 3959

 3960
The <ds:Signature> element SHALL include a <ds:KeyInfo> element. The <ds:KeyInfo> 3961
element SHALL include a <wsse:SecurityTokenReference> element which refers to the 3962
requestor's signing key certificate. This reference MUST use <wsse:Reference> element. 3963
The <wsse:Reference> element SHALL contain URI attribute which refers to the 3964
<wsse:BinarySecurityToken> by a bare name. 3965
Note that the signing key is to be repeated in the confirmation, rather than to rely on 3966
server state. 3967
 3968

12.3.4.3 Processing Rules 3969
• The responder SHALL check the responder’s nonce to see if it is the same as the 3970

nonce that was passed to the requestor in the corresponding response message. 3971
 3972
The responder SHALL check that the value included in <wsa:RelatesTo> element of the 3973
confirmation message is the same as the value included in <wsa:MessageID> element 3974
of the request message. 3975

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 140 of 154

12.3.5 License Transfer Protocol Correlation Processing Rules 3976
The License Transfer Protocol (LTP) involves a series of messages initiated by the Sink 3977
and terminated by the Source. Between the initial setup message and the terminating 3978
teardown message there are potentially multiple rounds of Sink Request and Source 3979
Response messages. The following processing rules augment this profile to ensure 3980
proper message correlation. 3981
 3982
The initial Sink Setup Request message and the Source RunAgent Response message 3983
MUST adhere to the correlation techniques specified in Sections 12.3.2 and 12.3.3, 3984
respectively. 3985
 3986
Subequent messages are a series of Sink Request and Source Response messages. 3987
An AgentResult is sent from the Sink to the Source in Request messages. A RunAgent 3988
or Teardown is sent from the Source to the Sink in Response messages. 3989
 3990
These subsequent Sink Request messages MUST be constructed like the Confirmation 3991
Message defined in Section 12.3.4 but with the following changes to facilitate the proper 3992
correlation of the multi-round exchanges. 3993

12.3.5.1 Message ID for the Message 3994
The <S11:Header> element SHALL contain a <wsa:MessageID> element. 3995

12.3.5.2 Correlation to Source Response Message 3996
The <S11:Header> element SHALL contain a <wsa:RelatesTo> element. The 3997
<wsa:RelatesTo> element SHALL include RelationshipType attribute of 3998
 3999

http://www.w3.org/2005/08/addressing/reply 4000
 4001
as defined in [WS-addr] and SHALL contain a value which is identical to the value 4002
contained in the MessageID of the Source Response message being replied to. 4003

12.3.5.3 Requestor’s Nonce 4004
The <wsse:Nonce> element SHALL contain a nemosec:Usage attribute with the value 4005
defined in [NEMO] §3.1.4.1.3.1.3: 4006
 4007

#confirmation-returnedNonce 4008
 4009

and SHALL contain a value which is identical to the responder’s nonce contained in the 4010
Response message being replied to. 4011

12.4 SAML Assertion Profile 4012

Marlin utilizes the Security Assertion Markup Language (SAML) for conveying a variety 4013
of information. SAML is extremely flexible insofar as what type of information can be 4014
conveyed within an assertion and the number of statements embodied by an assertion. 4015
The following subsections prescribe simple limitations on how SAML assertions are 4016
constructed so as to simplify the processing of the assertions and to enable 4017
interoperability and accuracy of the information distilled from an assertion. 4018

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 141 of 154

12.4.1 Assertion Conditions 4019
SAML 1.1 allows for an optional <saml:Conditions> element which when processed may 4020
influence the validity of the assertion. Presently we do not require any conditions in this 4021
profile. However, it is expected that temporal attributes (saml:NotOnOrAfter and 4022
saml:NotBefore) are used. If these attributes are present then the processing rules 4023
specified in [SAML1.1] §2.3.2.1.1 SHALL apply. 4024
 4025
In general, Marlin uses assertions to reflect some fact that persists for a period longer 4026
than the initial issueance and consumption of the assertion. Hence, the 4027
<saml:DoNotCache> element SHOULD NOT be used for this type of assertion. 4028

12.4.2 Assertion Subject 4029
SAML 1.1 allows for an assertion to contain multiple statements. This leads to the 4030
possibility that a given assertion may have multiple unique subjects. There are no 4031
specific usage scenarios in Marlin which requires this flexibility. Therefore, it is 4032
RECOMMENDED that all statements in an assertion refer to the same subject. 4033

12.4.3 Attributes 4034
In Marlin, SAML assertions are primarily used to convey trusted attributes about a 4035
system entity (typically a Nemo node.) A DRM Client is NOT REQUIRED to check 4036
whether required attributes appear in the assertion but it MAY return an error if a 4037
required attribute is not in the assertion. 4038
 4039
Attributes are qualified by their origin namespace so that two attributes with the same 4040
name may be unambiguously described. However, SAML does not preclude two or more 4041
fully qualified attributes from appearing in either the same statement or in multiple 4042
statements within an assertion. It is RECOMMENDED that no two fully qualified 4043
attributes appear multiple times within an assertion. 4044
 4045
The type of attribute values that can be issued in SAML assertions is restricted to the 4046
following XML data types: 4047

- xs:string 4048
- xs:int 4049
- xs:duration 4050
- xs:dateTime 4051
- xs:base64Binary 4052
- xs:nonNegativeInteger 4053

 4054
No complex type is allowed. If the type is not indicated, it SHALL be processed as an 4055
xs:string value. The XML data type xs:nonNegativeInteger SHOULD be used whenever 4056
the attribute is used to convey version information. 4057

12.4.4 Subject Confirmation 4058
According to [WS-SECSAML] §3.1, systems are required to implement the processing 4059
necessary to support subject confirmation methods (i.e. holder-of-key and sender-4060
vouches). 4061
 4062

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 142 of 154

In Marlin, subject confirmation processing is realized as described in Section 0. 4063
Therefore, the <saml:SubjectConfirmation> element SHALL NOT be specified in a 4064
SAML assertion. 4065

12.4.5 Signature 4066
All assertions MUST be signed so as to enable verification of their authenticity. The 4067
guidance give in Section 12.2 SHALL be followed in addition to the guidance given in 4068
[SAML1.1] §5. 4069

12.5 Name Management Profile 4070
A general description of the rules for specifying identifiers was given in Section 1.3. In 4071
this section we give guidance to specific naming conventions used to identify the various 4072
system objects. 4073

12.5.1 SeaShell Object Ownership 4074
The SeaShell database specification (see [8pus] §7.5) defines different ways of 4075
determining control program identities. In Marlin, the identities of the Control program 4076
SHALL be acquired from the Subject distinguished name found in a signer’s X.509 4077
certificate. Octopus allows for multiple signatures so there may be more than one 4078
identity attributed to a Control. Controls may be signed directly or indirectly. When a 4079
Control is indirectly signed (see Sections 3.3.4, 9.3.2.1 and 9.3.2.2) then the identities of 4080
a Control SHALL also include each of the indirect signers. 4081

12.5.1.1 Container Delegate 4082
A Delegate is a Plankton byte code routine, located in a Control object that performs a 4083
task on behalf of another routine, located in a different Control object. 4084
 4085
A Delegates primary use is for making it possible for a control to access SeaShell 4086
objects that belong to a different principal than the principal that signed the control. This 4087
is necessary, because SeaShell access control is based on the principal identifiers of the 4088
signers of the Control that contains the code making the SeaShell call. 4089
 4090
The path of the root container of the SeaShell database is 4091

/Octopus/SeaShell/Databases/Marlin 4092
 4093
This container is owned by the principal 4094

urn:marlin:drmservices:seashell 4095
 4096
To bootstrap the process of assigning ownership of descendant containers a signing 4097
certificate must be created and issued under the DRM Services (the issuer 4098
DN=urn:marlin:drmservices) trust hierarchy. This certificate would be used to sign 4099
Delegate Controls which create sub-containers and reassign ownership. 4100
 4101
This certificate would have the following attributes: 4102
 4103

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 143 of 154

Delegate
Signing Key

Basic
Constraint

Key Usage Certificate Policy Identifiers

DRM Services Container Delegate Signing
Delegate Control CA=FALSE digitalSignature id-cp-octopus-marlin-signing-

control

 4104

12.5.2 Octopus Naming 4105
Octopus object names referenced via System.Host.Get/SetObject() fall into one of three 4106
categories. The first category, Octopus standard names, are object names that allow 4107
read only access to objects where Octopus specifications define a standard naming path 4108
such as /Octopus/Personality/Attributes. The second category is SeaShell database 4109
names. Third is Marlin standard names that are object names that allow read only 4110
access to objects defined by Marlin standards. Names in the first two categories use the 4111
Octopus defined path followed by a Marlin defined URN. The third category uses a 4112
Marlin specific extension. 4113
 4114

Category Prefix Example

Octopus <octopus-
prefix>/urn:marlin:<rest
of name>

/Octopus/Personality/Attributes/urn:
marlin:foo

SeaShell DB /Octopus/SeaShell/Data
bases/Marlin

/Octopus/SeaShell/Databases/Marli
n/SomeCompany/foo

Marlin /Marlin /Marlin/LicenseRevocations/
SomeCompany/IdList/foo

 4115
All path components that follow the Marlin component are implicitly from the Marlin 4116
standards name space unless a subsequent name component is a URN in which case 4117
all following name components are implicitly from the namespace of that URN. 4118
 4119
URN identifiers that are referenced via a System.Host.GetObject call SHALL NOT use 4120
“/” characters as “/” is a reserved character within the namespace specific string of a 4121
URN and as the path separator for object paths. If a reserved character is to be 4122
represented then the %-encoding defined in [URN] §2.2 MUST be used to encode the 4123
URN portion of the object path. 4124
 4125
Organizations SHOULD use their own domain name for URLs. 4126

12.5.3 Extensions 4127
Entity specific extensions can be defined. These extensions can only be referenced by 4128
SomeOrganization’s proprietary actions because only SomeOrganization clients SHALL 4129
make this path available. Non SomeOrganization clients SHALL NOT execute a 4130
SomeOrganization proprietary action. 4131

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 144 of 154

Object Path

/SomeOrganization

12.5.4 SeaShell Database ([8pus] §7) 4132
The pattern for Marlin global database is as follows. 4133

Object Path

/Octopus/SeaShell/Databases/Marlin

 4134
The pattern for Marlin service specific database is as follows. 4135

Object Path

/Octopus/SeaShell/Databases/Marlin/<service container name>

12.5.4.1 Marlin Core 4136
Selected information from Marlin assertions SHALL be made available for access via 4137
System.Host.GetObject. Since a client may have multiple distinct instances of 4138
assertions (e.g. role attribute assertions), the naming path includes an index (index 4139
origin 0). 4140

Pattern Example

/Marlin/Assertions/@<index>/<item-path> /Marlin/Assertions/@0/Attributes/foo

 4141
Marlin core defines a naming pattern for accessing the IssueInstant element of an 4142
assertion and for accessing the attribute values in the assertion. 4143
 4144

Pattern

/Marlin/Assertions/@<index>/IssueInstant

/Marlin/Assertions/@<index>/Attributes/<attribute-name>

12.5.4.2 Role attribute assertions 4145
According to the NEMO Trust Management Bindings specification ([NEMO] §4), each 4146
role SHALL be represented as an attributes within a SAML assertion and multiple roles 4147
MAY be expressed within the same SAML assertion. A client may play many roles in 4148
Marlin. 4149
 4150
 4151
We rely on the namespace equivalence defined in Table 1-3 to simplify object path 4152
composition. In general, the path composition for <attribute-name> is accomplished by 4153
taking the value of the saml:AttributeNamespace attribute, appending a “:” and then 4154
appending value of the saml:AttributeName attribute. 4155

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 145 of 154

 4156
Attribute Namespace Name Object Path Value Type
urn:marlin:nemo:2004:attribute role /Marlin/Assertions/@<index>

/Attributes/urn:marlin:nemo:2
004:attribute:role

String

Table 12-1 Role Attribute Namespace/Name 4157

By using the equivalence we avoid the need to URL encode the attribute namespace 4158
when using it to construct an object path. 4159
 4160
The identifiers for the various role attribute values defined by this specification are 4161
enumerated in Table 4-2. 4162

12.5.4.3 Marlin Security Specification Attribute 4163
The Marlin security specification version attribute represents the security versions of the 4164
various Marlin specifications the client supports. Control programs can encode a check 4165
for the security specification and version. In the event that the security of a version of the 4166
 specification is deemed compromised, new licenses may encode the requirement for 4167
the new version of the specification. Also, during peer to peer (or client to server) 4168
interactions, a Nemo node can use the security specification versions in the role attribute 4169
assertion of the entity it is interacting with to determine which security versions of the 4170
specifications (and thus what features) the entity supports 4171
 4172
If a client is updated and the supported specifications change, a new role attribute 4173
assertion for the client can be acquired that accurately reflects the new capabilities. 4174
Compliance rules require that the implementation of the client not allow the role attribute 4175
assertion to be referenced (e.g. via System.Host.GetObject) or sent in part of a Nemo 4176
protocol if the specifications and versions in the assertion do not accurately reflect the 4177
capabilities of the client. 4178
 4179
Attribute
Namespace

Name Object Path Value Type

urn:marlin:core version-
major

/Marlin/Assertions/@<index>/Attrib
utes/urn:marlin:core:version-major

nonNegativeInteger

urn:marlin:core version-
minor

/Marlin/Assertions/@<index>/Attrib
utes/urn:marlin:core:version-minor

nonNegativeInteger

12.5.4.4 Capabilities 4180
There are many roles in Marlin. Each role is represented by a distinct role attribute. An 4181
entity implementing a given role may also implement optional capabilities. This 4182
specification defines an attribute namespace and standard values to convey the 4183
capabilities of an entity implementing a particular role. 4184
 4185
If a component is updated and the set of capabilities changes, a new role attribute 4186
assertion for the related roles filled by the component can be acquired that accurately 4187
reflects the new capabilities. 4188
. 4189
The following table enumerates the capability attributes which may be attributed to for a 4190
entity assigned the urn:marlin:core:role:drm-client role. 4191

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 146 of 154

 4192
Attribute
Namespace

Name Object Path

urn:marlin:core:clie
nt:capabilities

trusted-time /Marlin/Assertions/@<index>/Attributes/urn:m
arlin:core:client:capabilities:trusted-time

 4193
The presence of the trusted-time attribute indicates that the client implements the 4194
System.Host.GetTrustedTime function in compliance with the Marlin compliance rules 4195
regarding trusted time. 4196
Control programs may query the capabilities of the role attribute assertion to determine if 4197
specific actions are supported. 4198

12.5.4.5 Role and Capability Example (Informative) 4199
The previous sections described the various attributes which are conveyed within an 4200
assertion for a given role. The following example depicts a fragment of an SAML 1.1 4201
assertion carrying this information. 4202
 4203
<saml:AttributeStatement 4204
 xmlns="urn:oasis:names:tc:SAML:1.0:assertion"> 4205
 <saml:Subject> 4206
 <saml:NameIdentifier 4207
 Format= 4208
 "http://nemo.intertrust.com/2004/saml/name-format/uri"> 4209
 urn:marlin:organization:phony:fuse:nemo:personality:00000001 4210
 </saml:NameIdentifier> 4211
 </saml:Subject> 4212
 <saml:Attribute 4213
 AttributeNamespace="urn:marlin:nemo:2004:attribute" 4214
 AttributeName="role"> 4215
 <saml:AttributeValue> 4216
 urn:marlin:core:role:drm-client</saml:AttributeValue> 4217
 </saml:Attribute> 4218
 <saml:Attribute AttributeNamespace="urn:marlin:core" 4219
 AttributeName="version-major"> 4220
 <saml:AttributeValue 4221
 xsi:type="xsd:nonNegativeInteger">1</saml:AttributeValue> 4222
 </saml:Attribute> 4223
 <saml:Attribute AttributeNamespace="urn:marlin:core" 4224
 AttributeName="version-minor"> 4225
 <saml:AttributeValue 4226
 xsi:type="xsd:nonNegativeInteger">1</saml:AttributeValue> 4227
 </saml:Attribute> 4228
 <saml:Attribute 4229
 AttributeNamespace="urn:marlin:core:client:capabilities" 4230
 AttributeName="trusted-time"> 4231
 <saml:AttributeValue/> 4232
 </saml:Attribute> 4233
 </saml:AttributeStatement> 4234
 4235

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 147 of 154

12.6 Type Mapping of Host Objects 4236

12.6.1 Mapping XML Types to Host Objects 4237
 4238
Marlin defines mechanisms by which to make data visible to Plankton programs as Host 4239
Objects. Whenever this data is transported as XML encoded objects (e.g., SAML 4240
Assertion) the following table defines the type mapping. If not listed below all other 4241
types SHALL be treated as a String. 4242
 4243

XML Data Type Host Object Data Type

<xs:string/> String

<xs:int/> Integer

<xs:duration/> Integer {converted to number of minutes}

<xs:dateTime/> Integer {converted to number of minutes elapsed
since Jan 1, 1970 00:00:00}

<xs:base64Binary/> Byte Array

<xs:nonNegativeInteger/> Integer

 4244
Table 12-2 XML to Host Object Data Types 4245

12.6.2 Mapping Octopus Object Attributes to Host Objects 4246
Marlin defines mechanisms by which to transport Octopus Object Attributes and make 4247
them visible to Plankton programs as Host Objects. The following table defines the type 4248
mapping, XML mixed content encoding for <oct:Attribute/> elements and the Host Object 4249
representation. 4250
 4251

Octopus Object
Attribute Type

<oct:Attribute/
> XML ‘type’

attribute

<oct:Attribute/>
Mixed Content

Host Object Data
Type

[Named Attributes] n/a n/a Host Object of the
same name

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 148 of 154

Octopus Object
Attribute Type

<oct:Attribute/
> XML ‘type’

attribute

<oct:Attribute/>
Mixed Content

Host Object Data
Type

[Unnamed Attributes] n/a n/a Host Object with
no name

IntegerAttribute int string Integer

StringAttribute string string String

ByteArrayAttribute bytes base64Binary Byte Array

ListAttribute list <oct:AttributeList/> Container

ArrayAttribute array <oct:AttributeArray/> Container

Table 12-3 Octopus Object Attributes to Host Object Data Types 4252

12.6.3 Mapping Agent Parameters to Host Objects 4253
Agent parameters are transported as XML encoded objects and made visible to 4254
Plankton programs as Host Objects. Agent parameters are transported in an 4255
<mc:AgentCarrier/> element. The parameters are a list of one or more 4256
<pk:ParameterBlock/> elements. Mapping a <pk:ParameterBlock/> to a Host Object is 4257
done using the following rules: 4258
 4259

• The name attribute of the <pk:ParameterBlock/> maps to a Host Object name. 4260
• The value of each parameter is expressed as a <pk:ValueBlock/> element. 4261

 4262
The following table defines the <pk:ValueBlock/> type mapping, XML mixed content 4263
encoding for <pk:ValueBlock/> elements and Host Object representation. 4264
 4265

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 149 of 154

Table 12-4 Agent Parameters to Host Object Data Types 4266

The <pk:ValueBlock/> types ExtendedParameter, Real and Resource MUST NOT be 4267
used. For each <pk:ValueBlock/> value in the list there is a corresponding Host Object in 4268
the container. If the value is a <pk:ParameterBlock/>, then it maps to a named Host 4269
Object according to the mapping rules for <pk:ParameterBlock/> elements. Other 4270
<pk:ValueBlock/> types map to an unnamed Host Object according to the mapping rules 4271
for <pk:ValueBlock/> elements as defined in Table 12-3. 4272
 4273
The following example depicts XML encoded Agent Parameters. 4274
 4275
 <ValueListBlock> 4276
 <ValueBlock type="Parameter"> 4277
 <ParameterBlock name="ContainerWithNames"> 4278
 <ValueBlock type="ValueList"> 4279
 <ValueListBlock> 4280
 <ValueBlock type="Parameter"> 4281
 <ParameterBlock name="Color"> 4282
 <ValueBlock 4283
 type="String">Red</ValueBlock> 4284
 </ParameterBlock> 4285
 </ValueBlock> 4286
 <ValueBlock type="Parameter"> 4287
 <ParameterBlock name="Size"> 4288
 <ValueBlock 4289
 type="Integer">37</ValueBlock> 4290
 </ParameterBlock> 4291
 </ValueBlock> 4292
 </ValueListBlock> 4293

<pk:ValueBlock/>
Type

<pk:ValueBlock/>
Mixed Content

Host Object Data Type

Integer string Integer

String string String

Date string Integer {converted to number of
minutes elapsed since Jan 1,
1970 00:00:00}

ByteArray base64Binary Byte Array

Parameter <pk:ParameterBlock/> see ValueList

ValueList <pk:ValueListBlock/> Container

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 150 of 154

 </ValueBlock> 4294
 </ParameterBlock> 4295
 </ValueBlock> 4296
 <ValueBlock type="Parameter"> 4297
 <ParameterBlock name="ContainerWithoutNames"> 4298
 <ValueBlock type="ValueList"> 4299
 <ValueListBlock> 4300
 <ValueBlock type="String">Blue</ValueBlock> 4301
 <ValueBlock type="Integer">512</ValueBlock> 4302
 </ValueListBlock> 4303
 </ValueBlock> 4304
 </ParameterBlock> 4305
 </ValueBlock> 4306
 <ValueBlock type="Parameter"> 4307
 <ParameterBlock name="SomeInteger"> 4308
 <ValueBlock type="Integer">156</ValueBlock> 4309
 </ParameterBlock> 4310
 </ValueBlock> 4311
 <ValueBlock type="Parameter"> 4312
 <ParameterBlock name="SomeString"> 4313
 <ValueBlock type="String">Hello</ValueBlock> 4314
 </ParameterBlock> 4315
 </ValueBlock> 4316
 <ValueBlock type="Parameter"> 4317
 <ParameterBlock name="SomeBytes"> 4318
 <ValueBlock type="ByteArray">SGVsbG8K</ValueBlock> 4319
 </ParameterBlock> 4320
 </ValueBlock> 4321
 </ValueListBlock> 4322
 4323
The corresponding Host Object tree follows: 4324
 4325
[ContainerWithNames] 4326
 Color="Red" 4327
 Size=37 4328
 4329
[ContainerWithoutNames?] 4330
 Blue 4331
 512 4332
 4333
SomeInteger=156 4334
SomeString="Hello" 4335
SomeBytes={0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x0a} 4336
 4337
 4338

12.7 XML Profile 4339

12.7.1 XML Attribute Composition Constraints 4340
Validating XML parsers are not mandated nor recommended by this specification. Thus 4341
it is assumed that the XML parser of an implementation does not know the declared type 4342
of an XML attribute when performing Attribute-Value Normalization ([XML-1-1] §3.3.3). 4343
To ensure interoperability, constraints on the composition of XML attributes are imposed 4344

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 151 of 154

as follows. XML attributes SHALL NOT contain leading or trailing white space (#x20, 4345
#xD, #xA, #x9) characters or sequences of more than one white space character. 4346

12.7.2 Using QNames 4347
Validating XML parsers are not mandated nor recommended by this specification. To 4348
ensure unambiguous treatment of attribute values and element content the following 4349
constraints on the use of QNames is adopted. 4350

 4351
QNames SHALL only be used with XML Element and Attribute Names in conformance 4352
with [XMLns, QNAMEIDS]. Particularly, when an XML element instance explicitly asserts 4353
its type with the xsi:type attribute, the value of the xsi:type attribute SHALL be processed 4354
as a string identifier. 4355
The following table defines string identifiers which can be used in the xsi:type attribute 4356
value to indicate the XML data types ([Schema]). 4357
 4358

String Identifier XML Data Type

xsd:string xs:string

xsd:int xs:int

xsd:duration xs:duration

xsd:dateTime xs:dateTime

xsd:base64Binary xs:base64Binary

xsd:nonNegativeInteger xs:nonNegativeInteger

 4359
 4360

12.8 Security Metadata Propagation (Informative) 4361

The Marlin core specification defines a variety of security metadata types. Some of this 4362
metadata is provisioned at manufacturing time or conveyed to relying parties via a 4363
service interface such as a Security Data Provider. The security metadata provisioned at 4364
manufacture may be out-of-date before the device is sold to the consumer. 4365
 4366
Keeping a device current can be a challenge in some deployment scenarios. Marlin core 4367
devices do not presume a specific network transport technology. For example, a Marlin 4368
core device may access a transport via a direct tethered connection to another device. 4369
Another example is a set of devices in a home environment using IP protocols but 4370
absent of a routable Internet connection. Even though Marlin core devices may operate 4371
in this limited setting they still require current security metadata to enable governance. 4372
The intent of the informative text is to describe alternative implementation techniques by 4373
which security metadata can be acquired and disseminated. 4374
 4375
In the following sections we describe the traditional mechanism by which security 4376
metadata can be refreshed. Within that section we also discuss how a Security Data 4377

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 152 of 154

Provider Service can collect (and by its service interface distribute) security metadata by 4378
Marlin specified mechanisms. Finally we describe alternative sources of security 4379
metadata and how a Security Data Provider Service might leverage these alternate 4380
sources to update the security metadata it distributes. 4381

12.8.1 Common Security Metadata Acquisition Mechanisms 4382
The primary mechanism by which Marlin core specification enables distribution of 4383
security metadata is through the Security Data Provider service. This service may have 4384
online access so that it can acquire new security metadata where as clients of the 4385
service may not. The obvious example is a tethered device. To support its clients the 4386
Security Data Provider service could periodically retrieve updated security metadata. 4387
 4388
To support this deployment environment a Security Data Provider service can resolve a 4389
CRL Distribution Point to retrieve an updated CRL and supply it to the tethered device 4390
the next time it is connected. The same is true for the Broadcast Key Block since it 4391
defines a set of distribution URIs which may be resolved to retrieve a new Broadcast 4392
Key Block. Since both the CRL and the BKB are integrity protected by the issuer and 4393
contains version information the Security Data Provider can keep current. 4394

12.8.2 Alternate Security Metadata Acquisition Mechanisms 4395
There are some less obvious mechanisms by which a Security Data Provider service 4396
might acquire updated security metadata. This section describes some of the possible 4397
out-of-band mechanism which might be applied by an implementation. 4398
 4399
Content is made available to a DRM Client in many ways and for all intents and 4400
purposes the DRM client is decoupled from the delivery system. Therefore a DRM Client 4401
might aggregate content from different delivery systems. That is, the content may source 4402
from both online and offline delivery systems. More current security metadata may be 4403
attached to content which sources from an online delivery system. 4404
 4405
With that in mind it is worth noting that the Broadcast Key Block (BKB) is essentially 4406
attached to a content license when the license is created. DRM Clients must evaluate 4407
this license when they attempt to render content. A DRM Client could assist a Security 4408
Data Provider service by detaching the most current BKB it encounters and then make 4409
the BKB available to the Security Data Provider service. A DRM Client already has a 4410
well defined core service which it must expose which could be used to get the BKB to 4411
the Security Data Provider, the DRM Client Information service. The payload of the DRM 4412
Client Information service has a specific interface to retrieve security metadata from a 4413
DRM Client. 4414
 4415
On a similar note, a DRM Client may be provisioned at manufacture time with the most 4416
up to date version of the BKB. Thus by using the same alternative propagation scheme 4417
described above a Security Data Provider can obtain a fresher BKB. 4418
 4419
There is also the possibility for the Security Data Provider service to acquire security 4420
metadata out-of-band. For example, in a broadcast distribution setting it may be possible 4421
to embed security metadata in a transport stream. The device receiving the broadcast 4422
could extract the security metadata and make it available to a co-resident 4423
implementation of a Security Data Provider service. 4424

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 153 of 154

 4425
Another out-of-band mechanism that could be utilized in a broadcast environment could 4426
be to acquire current time of day from time of day services in the cable operator's data 4427
network. Depending on the operational security of the cable operator’s data network this 4428
source of time might be considered trusted. 4429
 4430

4431

Copyright (c) Marlin Developer Community, 2003-2013. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 154 of 154

 4432
Appendix A: XML Schemas File Names 4433

 A.1: proximity-check.xsd 4434
 A.2: drm-client-information.xsd 4435
 A.3: domain-manager-information.xsd 4436

 A.4: provide-drm-object.xsd 4437
 A.5: provide-security-data.xsd 4438
 A.6: license-transfer.xsd 4439

 A.7: marlin-nemo-core-exceptions.xsd 4440
 4441

Appendix B: WSDLs File Names 4442

 B.1: proximity-check.wsdl 4443
 B.2: drm-client-information.wsdl 4444
 B.3: domain-manager-information.wsdl 4445

 B.4: provide-drm-object.wsdl 4446
 B.5: provide-security-data.wsdl 4447
 B.6: license-transfer.wsdl 4448

 4449

	1 Introduction
	1.1 Document Organization
	1.2 Conformance Conventions
	1.3 Namespaces and Identifiers
	1.3.1 Namespaces and Notation
	1.3.2 Names and Identifiers
	1.3.3 Marlin Naming

	Abbreviations
	1.5 Terms and Definitions
	1.6 References
	Normative References
	Informative References

	2 Marlin Core System Overview (Informative)
	2.1 Scope of the Marlin Core System Specifications
	2.2 Marlin Core System Entities
	2.3 Marlin Domains
	2.4 Content Binding and Movement under Marlin Governance

	3 Marlin DRM Objects
	3.1 Octopus Objects
	3.1.1 Node and Link Objects
	3.1.2 License Objects
	3.1.3 Lookup Scope for Spawned Controls
	3.1.4 Agent Conveyance for License Transfer

	3.2 Octopus Object Attributes and Extensions
	3.2.1 Octopus Nodes
	3.2.1.1 Octopus Personality Nodes

	3.2.2 Octopus Links
	3.2.3 License objects
	3.2.4 License Object Contexts
	3.2.4.1 Contexts IDs
	3.2.4.2 Context Tag in Objects
	3.2.4.3 Contexts in Bundles

	3.3 XML Encoding of Octopus Objects
	3.3.1 Overview
	3.3.2 General Schema Design
	3.3.3 Additional Constraints on the Schema
	3.3.3.1 Nodes
	3.3.3.1.1 Personality Nodes
	3.3.3.1.2 Attributes
	3.3.3.1.3 Extensions

	3.3.3.2 Links
	3.3.3.2.1 Attributes
	3.3.3.2.2 Extensions

	3.3.3.3 Protector
	3.3.3.4 ContentKey
	3.3.3.5 Controller
	3.3.3.6 Control

	3.3.4 Signatures: Use of XML Digital Signature [xmldsig]
	3.3.4.1 Controller Objects

	4 Marlin Core System Roles and Services
	4.1 Overview
	4.2 Roles Definitions
	4.2.1 Device
	4.2.2 Domain Information Provider
	4.2.3 Security Data Provider
	4.2.4 DRM Object Provider
	4.2.5 DRM Client

	5 Marlin Core System Protocols
	5.1 NEMO Architecture for Marlin
	5.1.1 Concepts and Architecture
	5.1.1.1 NEMO Nodes
	5.1.1.2 NEMO Roles
	5.1.1.3 Announcer
	5.1.1.4 Discoverer
	5.1.1.5 Inspection Client

	5.2 Message Security Policies
	5.2.1 Overview
	5.2.2 Protocol Security Policy Identifiers
	5.2.3 Request Policies
	5.2.3.1 No Security
	5.2.3.2 Freshness Only
	5.2.3.3 Integrity Only
	5.2.3.4 Integrity + Freshness
	5.2.3.5 Confidentiality Only
	5.2.3.6 Full Security

	5.2.4 Response Policies
	5.2.4.1 No Security
	5.2.4.2 Integrity Only
	5.2.4.3 Integrity + Freshness
	5.2.4.4 Confidentiality Only
	5.2.4.5 Full Security

	5.3 Message Faults
	5.3.1 Faults for SOAP Header Processing
	5.3.2 Faults for SOAP Body Processing
	5.3.3 Fault Addressing

	5.4 Discovery
	5.4.1 Overview
	5.4.2 Description Extension

	5.5 Inspection
	5.5.1 Overview
	5.5.2 Inspection Client and Service interaction
	5.5.2.1 Supported Dialects
	5.5.2.2 GetMetadata request
	5.5.2.3 GetMetadata response
	5.5.2.3.1 WSDL 1.1 dialect
	5.5.2.3.2 NEMO Node Information dialect

	5.6 Subscription and Notification
	5.6.1 Overview
	5.6.2 Topics
	5.6.2.1 Provide Security Data Topics
	5.6.2.2 Provide DRM Objects Topic

	5.6.3 Notification Consumer
	5.6.3.1 Notify
	5.6.3.1.1 Qualified Notification Message

	5.6.4 Notification Producer
	5.6.4.1 Subscribe

	5.6.5 Subscription Manager Operations
	5.6.5.1 Renew
	5.6.5.2 Unsubscribe

	5.6.6 Faults

	5.7 Service-specific Protocols
	5.7.1 Proximity Check Protocol (HARPOON)
	5.7.1.1 Overview
	5.7.1.2 Generation of the set R of Q pairs from a Seed S
	5.7.1.3 Sequence
	5.7.1.4 Security Considerations
	5.7.1.5 Messages
	5.7.1.5.1 Setup Request
	5.7.1.5.2 Setup Response
	5.7.1.5.3 Challenge Request
	5.7.1.5.4 Challenge Response

	5.7.1.6 Protocol Security Policies

	5.7.2 DRM Client Information
	5.7.2.1 Overview
	5.7.2.2 Get Octopus Node
	5.7.2.2.1 Request Parameters
	5.7.2.2.2 Response Data
	5.7.2.2.3 Protocol Security Policies

	5.7.2.3 Get Security Metadata
	5.7.2.3.1 Request Parameters
	5.7.2.3.2 Response Data
	5.7.2.3.3 Protocol Security Policies

	5.7.2.4 Get Domain Links
	5.7.2.4.1 Request Parameters
	5.7.2.4.2 Response Data
	5.7.2.4.3 Protocol Security Policies

	5.7.2.5 Get Scuba Secret Sharing Key
	5.7.2.5.1 Request Parameters
	5.7.2.5.2 Response Data
	5.7.2.5.3 Protocol Security Policies

	5.7.3 Provide Domain Information
	5.7.3.1 Overview
	5.7.3.2 Request Parameters
	5.7.3.3 Response Data
	5.7.3.4 Protocol Security Policies

	5.7.4 Provide DRM Objects
	5.7.4.1 Overview
	5.7.4.2 Request parameters
	5.7.4.3 Response Data
	5.7.4.4 Confirmation parameters
	5.7.4.5 Notification
	5.7.4.6 Protocol Security Policies

	5.7.5 Provide Security Data
	5.7.5.1 Overview
	5.7.5.2 Request parameters
	5.7.5.3 Response Data
	5.7.5.4 Notification
	5.7.5.5 Protocol Security Policies

	5.7.6 License Transfer
	5.7.6.1 Overview
	5.7.6.2 Setup Message Parameters
	5.7.6.3 RunAgent Message Parameters
	5.7.6.4 AgentResult Message Parameters
	5.7.6.5 Teardown Message Parameters
	5.7.6.6 Protocol Security Policies

	6 Marlin Protocol Bindings
	6.1 HTTP/OBEX Binding
	6.1.1 Connection Establishment
	6.1.2 Connection Termination
	6.1.3 Message Exchange
	6.1.4 Aborting a Message Exchange
	6.1.5 Mapping HTTP Messages to OBEX
	6.1.5.1 HTTP Method to OBEX Opcode Mapping
	6.1.5.2 HTTP Status Code to OBEX Response Code Mapping
	6.1.5.3 HTTP Content-Type entity-header to OBEX Type Header Mapping
	6.1.5.4 HTTP message-header to OBEX HTTP Header Mapping
	6.1.5.5 HTTP message-body to OBEX Body or End-of-Body Mapping
	6.1.5.6 Example HTTP Message Exchange (Informative)

	6.2 SOAP 1.1/HTTP 1.1 Binding (Informative)
	6.2.1 HTTP Headers
	6.2.1.1 HTTP Method
	6.2.1.2 Content-Type
	6.2.1.3 Content-Length
	6.2.1.4 SOAPAction
	6.2.1.5 Caching Policy

	6.3 NEMO Message Binding

	7 Marlin Key Management
	7.1 Introduction (Informative)
	7.2 HBES Broadcast Key Block Validity
	7.3 Content Key Object before Exclusion
	7.4 Content Key Object after Exclusion

	8 Renewability
	8.1 Overview
	8.2 Specification Version Attributes

	9 Marlin Trust Management
	9.1 Certificates
	Certificate Contents
	9.1.1.1 Version
	9.1.1.2 Signature
	9.1.1.3 Issuer
	9.1.1.4 Subject
	9.1.1.5 Subject Public Key Info

	9.1.2 Excluded Certificate Extensions
	9.1.2.1 Policy Mappings
	9.1.2.2 Policy Constraints
	9.1.2.3 Subject Alternative Name
	9.1.2.4 Issuer Alternative Name

	9.1.3 Certificate Extensions
	9.1.3.1 Authority Key Identifier
	9.1.3.2 Subject Key Identifier
	9.1.3.3 Key Usage
	9.1.3.4 Basic Constraints
	9.1.3.5 CRL Distribution Points Field
	9.1.3.6 Certificate Policies
	9.1.3.6.1 Certificate Policy OIDs for Octopus
	9.1.3.6.2 Certificate Policy OIDs for NEMO

	9.1.4 Certificate Validation
	9.1.4.1 Trust Anchors
	9.1.4.2 Certificate Path Validation
	9.1.4.3 Certificate Checking Process
	9.1.4.4 Signature Verification of Signed Data
	9.1.4.5 Key/Data Encipherment Process

	9.2 Certificate Revocation List
	CRL Contents
	9.2.1.1 Version
	9.2.1.2 Signature
	9.2.1.3 Issuer
	9.2.1.4 CRL Entry Extension
	9.2.1.5 CRL Extensions
	9.2.1.5.1 Issuing Distribution Point

	9.3 Trust Management of Marlin Services (Informative)
	9.3.1 Secure Peer Interactions
	9.3.1.1 Keys Used in NEMO Secure Communications

	9.3.2 DRM Services
	9.3.2.1 Registration Services
	9.3.2.2 License Issuing Services
	9.3.2.3 Marlin Personalization Services

	9.3.3 Data Certification Services
	9.3.3.1 Security Metadata Certification Services
	9.3.3.2 Content Metadata Certification Services (aka Content Packager)

	9.4 Trust Hierarchies and Policies
	9.4.1 Peer Application Interaction Trust Hierarchy
	9.4.1.1 Peer Application Interaction Authority
	9.4.1.2 Peer Application Interaction Certification Authority

	9.4.2 DRM Services Trust Hierarchy
	9.4.2.1 DRM Services Authority

	9.4.3 DRM Client Personalization Trust Hierarchy
	9.4.3.1 Trust Authority
	9.4.3.2 DRM Personalization Certification Authority

	9.4.4 Registration Services Trust Hierarchy
	9.4.4.1 Trust Authority
	9.4.4.2 Registration Certification Authority

	9.4.5 Content Licensing Trust Hierarchy
	9.4.5.1 Content License Services Authority
	9.4.5.2 Content License Certification Authority

	9.4.6 Data Certification Trust Hierarchy
	9.4.6.1 Data Certification Services Authority
	9.4.6.2 Security Metadata Service Certification Authority
	9.4.6.3 Content Metadata Certification Service Certification Authority

	10 File Format for Marlin Content
	11 Marlin Usage Rules
	11.1 Move and Copy Actions
	11.1.1 Theory of Operation (Informative)
	11.1.1.1 Overview
	11.1.1.2 License Elements
	11.1.1.3 Sequence of Operations
	11.1.1.4 Agent

	12 Profiles
	12.1 Cryptographic Algorithm Profiles
	12.1.1 Hashing (Digest) algorithms:
	12.1.2 Keyed-Hash Message Authentication Code algorithms
	12.1.3 Public Key algorithms
	12.1.4 Signature Hash algorithms
	12.1.5 Symmetric key algorithms
	12.1.6 Canonicalization

	12.2 XML Digital Signature Profile
	12.2.1 <ds:Signature> Element
	12.2.2 <ds:SignedInfo>
	12.2.2.1 <ds:CanonicalizationMethod>
	12.2.2.2 <ds:SignatureMethod>
	12.2.2.3 <ds:Reference>
	12.2.2.3.1 <ds:DigestMethod>
	12.2.2.3.2 <ds:DigestValue>

	12.2.3 <ds:SignatureValue>
	12.2.4 <ds:KeyInfo>
	12.2.4.1 HMAC Signatures
	12.2.4.2 Public Key Signatures

	12.3 NEMO Profile for Basic Secure Messaging
	12.3.1 Notation
	12.3.2 Request Message
	12.3.2.1 SOAP Header
	12.3.2.1.1 Action (Informative)
	12.3.2.1.2 Message ID for the Message
	12.3.2.1.3 Correlation to Request Message

	12.3.2.2 Security Header
	12.3.2.2.1 Protocol Identifier
	12.3.2.2.2 Profile
	12.3.2.2.3 Requestor’s Timestamp
	12.3.2.2.4 Requestor’s Nonce
	12.3.2.2.5 Responder’s Identifier
	12.3.2.2.6 Requestor’s Identifier
	12.3.2.2.7 Self-encrypted Message Key
	12.3.2.2.8 Requestor’s Public Signing Key Certificate Chain
	12.3.2.2.9 Requestor’s Public Encryption Key Certificate Chain
	12.3.2.2.10 Requestor’s Encrypted Message Encryption Key
	12.3.2.2.11 Requestor’s role attribute assertions
	12.3.2.2.12 Signature

	12.3.2.3 Processing Rules

	12.3.3 Response Message
	12.3.3.1 SOAP Header
	12.3.3.1.1 Action (Informative)
	12.3.3.1.2 Message ID for the Message
	12.3.3.1.3 Correlation to Request Message

	12.3.3.2 Security Header
	12.3.3.2.1 Protocol Identifier
	12.3.3.2.2 Profile
	12.3.3.2.3 Responder’s Timestamp
	12.3.3.2.4 Requestor’s Nonce
	12.3.3.2.5 Responder’s Nonce
	12.3.3.2.6 Responder’s Identifier
	12.3.3.2.7 Requestor’s Identifier
	12.3.3.2.8 Self-encrypted Message Key
	12.3.3.2.9 Responder’s Public Signing Key Certificate Chain
	12.3.3.2.10 Responder’s Encrypted Message Encryption Key
	12.3.3.2.11 Signature

	12.3.3.3 Processing Rules
	12.3.3.4 Fault Response

	12.3.4 Confirmation Message
	12.3.4.1 SOAP Header
	12.3.4.1.1 Action (Informative)
	12.3.4.1.2 Message ID for the Message
	12.3.4.1.3 Correlation to Request Message

	12.3.4.2 Security Header
	12.3.4.2.1 Protocol Identifier
	12.3.4.2.2 Profile
	12.3.4.2.3 Requestor’s Timestamp
	12.3.4.2.4 Responder’s Nonce
	12.3.4.2.5 Requestor’s Identifier
	12.3.4.2.6 Responder’s Identifier
	12.3.4.2.7 Self-encrypted Message Key
	12.3.4.2.8 Requestor’s Public Signing Key Certificate Chain
	12.3.4.2.9 Requestor’s Encrypted Message Encryption Key
	12.3.4.2.10 Signature

	12.3.4.3 Processing Rules

	12.3.5 License Transfer Protocol Correlation Processing Rules
	12.3.5.1 Message ID for the Message
	12.3.5.2 Correlation to Source Response Message
	12.3.5.3 Requestor’s Nonce

	12.4 SAML Assertion Profile
	12.4.1 Assertion Conditions
	12.4.2 Assertion Subject
	12.4.3 Attributes
	12.4.4 Subject Confirmation
	12.4.5 Signature

	12.5 Name Management Profile
	12.5.1 SeaShell Object Ownership
	12.5.1.1 Container Delegate

	12.5.2 Octopus Naming
	12.5.3 Extensions
	12.5.4 SeaShell Database ([8pus] §7)
	12.5.4.1 Marlin Core
	12.5.4.2 Role attribute assertions
	12.5.4.3 Marlin Security Specification Attribute
	12.5.4.4 Capabilities
	12.5.4.5 Role and Capability Example (Informative)

	12.6 Type Mapping of Host Objects
	12.6.1 Mapping XML Types to Host Objects
	12.6.2 Mapping Octopus Object Attributes to Host Objects
	12.6.3 Mapping Agent Parameters to Host Objects

	12.7 XML Profile
	12.7.1 XML Attribute Composition Constraints
	12.7.2 Using QNames

	12.8 Security Metadata Propagation (Informative)
	12.8.1 Common Security Metadata Acquisition Mechanisms
	12.8.2 Alternate Security Metadata Acquisition Mechanisms

