
Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 1 of 11

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

Marlin - Proximity Specification 13

Version 1.0.1 14
Final 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
Source Marlin Developer Community
Date January 20, 2012
 30

31

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 2 of 11

Notice 32

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO REPRESENTATION 33

ORWARRANTY, EXPRESS OR IMPLIED, CONCERNING THE 34

COMPLETENESS,ACCURACY, OR APPLICABILITY OF ANY INFORMATION 35

CONTAINED IN THIS DOCUMENT. THE MARLIN DEVELOPER COMMUNITY 36

(“MDC”) ON BEHALF OF ITSELF AND ITS PARTICIPANTS (COLLECTIVELY, 37

THE "PARTIES") DISCLAIM ALLLIABILITY OF ANY KIND WHATSOEVER, 38

EXPRESS OR IMPLIED, ARISING OR RESULTING FROM THE RELIANCE OR 39

USE BY ANY PARTY OF THIS DOCUMENT OR ANY INFORMATION 40

CONTAINED HEREIN. THE PARTIES COLLECTIVELY AND INDIVIDUALLY 41

MAKE NO REPRESENTATIONS CONCERNING THE APPLICABILITY OF ANY 42

PATENT, COPYRIGHT (OTHER THAN THE COPYRIGHT TO THE 43

DOCUMENT DESCRIBED BELOW) OR OTHER PROPRIETARY RIGHT OF 44

THIS DOCUMENT OR ITS USE, AND THE RECEIPT OR ANY USEOF THIS 45

DOCUMENT OR ITS CONTENTS DOES NOT IN ANY WAY CREATE BY 46

IMPLICATION, ESTOPPEL OR OTHERWISE, ANY LICENSE OR RIGHT TO 47

OR UNDER ANY PATENT, COPYRIGHT, TRADEMARK OR TRADE SECRET 48

RIGHTS WHICH ARE OR MAY BE ASSOCIATED WITH THE IDEAS, 49

TECHNIQUES, CONCEPTS OR EXPRESSIONS CONTAINED HEREIN. 50

Use of this document is subject to the agreementexecuted between you and the 51

Parties, if any. 52

Any copyright notices shall not be removed, varied, or denigrated in any manner. 53

Copyright © 2003 - 2012 by MDC, 415-112 North Mary Avenue #383 Sunnyvale, CA 54
94085, USA. All rights reserved. Third-party brands and names are the property of 55
their respective owners. 56

Intellectual Property 57

A commercial implementation of this specification requires a license from the Marlin 58
Trust Management Organization. 59

Contact Information 60

Feedback on this specification should be addressed to: editor@marlin-community.com 61

Contact information for the Marlin Trust Management Organization can be found at: 62
http://www.marlin-trust.com/ 63

 64

mailto:editor@marlin-community.com

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 3 of 11

Contents 65

 66

1 Introduction ... 4 67
1.1 Terminology and Conventions .. 4 68
1.2 Namespaces and Identifiers ... 4 69

1.2.1 Namespaces and Notation... 4 70
1.3 Abbreviations .. 4 71
1.4 References ... 5 72

1.4.1 Normative References ... 5 73
2 Mechanism for Proximity Check ... 6 74

2.1 Proximity Check Protocol over UDP ... 6 75
2.1.1 Overview .. 6 76
2.1.2 Preconditions .. 6 77
2.1.3 Generation of the set R of Q pairs from a Seed S ... 6 78
2.1.4 Protocol Steps .. 6 79

2.1.4.1 Target Setup .. 6 80
2.1.4.2 RTT Measurement Loop .. 7 81

2.1.5 Sequence Diagram ... 8 82
2.1.6 Timing Parameters ... 8 83
2.1.7 Security Considerations ... 8 84
2.1.8 NEMO Security Policies ... 9 85
2.1.9 Message Encodings ... 9 86

2.1.9.1 Setup .. 9 87
2.1.9.2 RTT Measurement Loop .. 9 88

3 Octopus Bindings .. 10 89
3.1 Constraints .. 10 90
3.2 Control Context ... 10 91

Appendix: XML Schema and WSDL File Names .. 11 92
 93
 94

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 4 of 11

1 Introduction 95

This specification describes the protocol and Octopus binding mechanism used for 96
proximity check. 97

1.1 Terminology and Conventions 98

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 99
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this 100
specification are to be interpreted as described in IETF RFC 2119 [RFC2119]. 101
 102
These capitalized key words are used to unambiguously specify requirements and 103
behavior that affect the interoperability and security of implementations. When these 104
key words are not capitalized they are meant in their natural-language sense. 105
 106
All elements of this specification are considered Normative unless specifically 107
marked Informative. All Normative Elements are Mandatory to implement, except 108
where such an element is specifically marked OPTIONAL. Finally, where Normative 109
elements are described as OPTIONAL, they MAY be omitted from an implementation, 110
but when implemented, they MUST be implemented as described. 111

1.2 Namespaces and Identifiers 112

This specification defines schemas conforming to XML Schemas [Schema] and 113
normative text to describe the syntax and semantics of XML-encoded objects and 114
protocol messages. In cases of disagreement between the schema documents and 115
the schema listings in this specification, the schema documents take precedence. 116
Note that in some cases the normative text of this specification imposes constraints 117
beyond those indicated by the schema documents. 118

1.2.1 Namespaces and Notation 119

The following table summarizes the normative schemas defined by this specification, 120
and their XML namespace [XMLns] URIs. These URIs MUST be used by 121
implementations of this specification: 122
 123

Prefix XML Namespace Schema File
Name

Description

 124
In addition to the schemas defined by this specification, we leverage existing 125
schemas to achieve our design goals. The following table summarizes the external 126
schemas used in this specification: 127
 128

Prefix XML Namespace Description

xsd: http://www.w3.org/2001/XMLSchema [Schema]

 129

1.3 Abbreviations 130

HTTP Hypertext Transfer Protocol

NEMO Networked Environment for Media Orchestration

RTT Round-Trip Time

SOAP Simple Object Access Protocol

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 5 of 11

UDP User Datagram Protocol

WSDL Web Services Description Language

XML Extensible Markup Language

 132

1.4 References 133

1.4.1 Normative References 134

 135

[8pus] Octopus DRM Technology Platform Specifications, Version
1.0

[MCS] Marlin – Core System Specification, version1.3 and its latest
errata

[SHA1] FIPS PUB 180-1. Secure Hash Standard. U.S. Department
of Commerce/National Institute of Standards and
Technology.
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate
Requirement Levels, IETF RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt.

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.ietf.org/rfc/rfc2119.txt

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 6 of 11

2 Mechanism for Proximity Check 136

This section defines the mechanism which SHALL be used to check proximity. 137

 When two implementations are connected through IP, the proximity check SHALL 138
be done by using the Proximity Check Protocol over UDP defined in §2.1. 139

 When two implementations are connected through USB, the proximity check 140
SHALL always be considered valid without measurement. 141

 In all other cases, the proximity check SHALL be considered failure. 142

2.1 Proximity Check Protocol over UDP 143

2.1.1 Overview 144

This protocol allows an anchor to check the proximity of a target. 145
This protocol is asymmetric as the anchor generates a secret seed and is the only 146
one that requires a secure timer. Moreover, the target does not need to trust the 147
anchor. It is also cryptographically efficient requiring only two public key operations. 148

2.1.2 Preconditions 149

The target is a NEMO client node and has, as such, a set of NEMO keys and 150
credentials. The anchor is not required to be a NEMO node, as no anchor NEMO 151
credentials are used in this protocol. 152

2.1.3 Generation of the set R of Q pairs from a Seed S 153

The set R is obtained from randomly generated seed using the following method: 154
Ri = H2Q-i(S) 155
 156
H(M) is the digest value of the hash function H over the message M. 157
Hn(M) = H(Hn-1(M)) for n>=1 and H0(M) = M 158
 159
The algorithm used for the hash function H() SHALL be [SHA1]. 160

2.1.4 Protocol Steps 161

2.1.4.1 Target Setup 162

The target chooses a UDP port number TargetPort that it is ready to receive 163
ChallengeRequest UDP datagrams on. The target chooses 32-bit number, 164
TargetSessionId, that it can use to differentiate between several concurrent protocol 165
sessions if necessary. The target also chooses the target timing parameters 166
SetupDelay and LoopDelay. 167
The target sends a TargetSetupRequest message to the anchor. The payload of this 168
message contains TargetSessionId, TargetPort, SetupDelay and LoopDelay. 169
 170
Upon receiving and validating the TargetSetupRequest, the anchor chooses a 171
random seed S, a maximum loop count Q, and generates a set R of Q pairs of 172
random numbers as specified in §2.1.32.1.2. The anchor chooses a UDP port 173
number AnchorPort that it is ready to receive ChallengeResponse UDP datagrams 174
on. Q MUST NOT exceed 254. The anchor chooses 32-bit number, AnchorSessionId, 175
that it can use to differentiate between several concurrent protocol sessions if 176

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 7 of 11

necessary. The anchor also chooses the anchor timing 177
parameterTerminationTimeout. 178
The anchor then sends a TargetSetupResponse reply back to the target. The 179
payload of the reply contains AnchorSessionId, Q, S, AnchorPort and 180
TerminationTimeout. 181
 182
Upon receiving this reply, the target computes R from Q and S, as specified in 183
§2.1.32.1.2.. 184
The target is now ready to receive ChallengeRequest UDP datagrams on TargetPort. 185

2.1.4.2 RTT Measurement Loop 186

The Anchor MAY perform up to Q RTT measurement loops for each protocol session. 187
Each loop consists of the following steps. The loop counter i is initialized at 0 and is 188
incremented by 1 for each iteration through the loop. 189
a) The anchor measures T = now 190
b) The anchor sends to the target a ChallengeRequest UDP datagram on port 191

Target-IP:TargetPort, where Target-IP is the IP address of the TCP endpoint 192
used by the target to send the TargetSetupRequest message. The 193
ChallengeRequest payload contains TargetSessionId (established during the 194
setup step), i, and R2*i 195

c) The target receives the ChallengeRequest UDP datagram. If the value of R2*i is 196
correct, it responds with ChallengeResponse UDP datagram sent to Anchor-197
IP:AnchorPort, where Anchor-IP is the IP address of the TCP endpoint to which 198
the TargetSetupRequest was sent. The ChallengeResponse payload contains 199
AnchorSessionId (established during the setup step), i, and R2*i+1. 200

d) The anchor receives the ChallengeResponse UDP datagram. The anchor 201
measures RTT = now-T. If the value of R2*i+1 is correct, the value of RTT is 202
accepted as a valid measurement. The anchor may keep the lowest valid 203
measured RTT along with the date and time of the measurement if it does not 204
terminate the loop before it has exhausted the Q possible iteration. 205

 206
The anchor MAY terminate the loop at any point before it has exhausted the Q 207
possible iterations (for example if it determines that the lowest measured RTT value 208
is below a certain threshold, or if it receives no response from the target for a long 209
time). When the anchor terminates the loop, it MUST send at least one special 210
“Termination” ChallengeRequest UDP datagram. A “Termination” ChallengeRequest 211
UDP datagram is one where the value of „i‟ is equal to 255 and the bytes for the „R2*i‟ 212
field are all set to 0. The anchor MAY send more than one “Termination” 213
ChallengeRequest UDP datagram for redundancy (delivery of UDP datagrams is not 214
guaranteed). 215
 216
Since the datagrams exchanged during this loop are exchanged over UDP, it is 217
possible that either the target and/or the anchor receive on the same UDP port some 218
datagrams belonging to different sessions. It is therefore important that when a 219
session is started, both the target and the anchor use the TargetSessionId and 220
AnchorSessionId, respectively, to decide which session a received datagram is a part 221
of. All datagrams processed during the RTT measurement loop MUST match the 222
TargetSessionId or AnchorSessionId that were established during the setup phase; 223
all other datagrams MUST NOT be considered part of the session (but they may still 224
be part of a different session happening at the same time). 225
 226

227

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 8 of 11

2.1.5 Sequence Diagram 228

 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250

2.1.6 Timing Parameters 251

The target timing parameters sent in the TargetSetupRequest message, SetupDelay 252
and LoopDelay, are both expressed in milliseconds. 253
The anchor MUST wait at least SetupDelay between the transmission of the 254
TargetSetupResponse reply and the transmission of the first ChallengeRequest 255
datagram. 256
The anchor MUST wait at least LoopDelay between two consecutive 257
ChallengeRequest messages while in the RTT measurement loop. 258
 259
The anchor timing parameter sent in the TargetSetupResponse message, 260
TerminationTimeout, is expressed in miliseconds. After the setup, the target 261
SHOULD keep listening for UDP datagrams on TargetPort for at least 262
TerminationTimeout after the last received message from the anchor (either the 263
TargetSetupResponse or any ChallengeRequest) unless the protocol can be 264
determined to have terminated (either a “Termination” ChallengeRequest UDP 265
datagram has been received, or the last possible ChallengeRequest, with the loop 266
counter i equal to Q-1, has been received). If no message has been received for 267
more than that amount of time, the protocol is implicitly terminated. 268
 269
A valid under-threshold RTT measurement MUST be 7 milliseconds or less, unless it 270
is overridden by another specification. 271

2.1.7 Security Considerations 272

When engaging in this protocol, care must be taken to follow the following basic 273
requirements. 274

The anchor MUST choose the seed S with a non-guessable secure random or 275
pseudo-random number generator such that the chances of using the same value S 276
in two separate protocol sessions is infinitesimal. 277

Target Anchor

Target chooses

 TargetPort

 TargetSessionID

 SetupDelay

 LoopDelay

Anchor chooses/creates

 AnchorPort

 AnchorSessionID

 Q, S

 TerminationTimeout

TargetSetupRequest
(NEMO over HTTP+SOAP w/
Integrity Only)

TargetSetupResponse
(NEMO over HTTP+SOAP w/
Confidentiality Only)

ChallengeResponse
(UDP to AnchorIP:AnchorPort)

ChallengeRequest
(UDP to TargetIP:TargetPort)

LOOP
[up to Q times]

ChallengeRequest
(UDP to TargetIP:TargetPort)
i = 255, R=”0x0000”

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 9 of 11

The RTT measurement loop MUST NOT be repeated with the same value of i during 278
a protocol session. 279

The protocol MUST be aborted if any unexpected message is received by either 280
party, including: 281

 If the target receives an incorrect value for R2*i in step c. 282

 If Q is larger than the maximum allowed value. 283

 If i is repeated in the loop 284

 If i exceeds Q 285

2.1.8 NEMO Security Policies 286

The TargetSetupRequest request MUST follow the „Integrity Only‟ policy, as defined 287
in [MCS] §5.2.3.3. 288
The TargetSetupResponse reply MUST follow the „Confidentiality Only‟ policy as 289
defined in [MCS] §5.2.4.4. 290
 291
The identifier for this protocol‟s security policy is 292

urn:marlin:proximityoverudp:1-0:nemo:services:proximity-check:policy:1

2.1.9 Message Encodings 293

The XML schema for this protocol is defined in the XML Namespace 294
urn:marlin:proximityoverudp:1-0:nemo:services:schemas 295
 296
A copy of the XML schema and WSDL is in Appendix A.1 and A.2, respectively. 297
 298

2.1.9.1 Setup 299

The TargetChallengeRequest and TargetChallengeResponse messages are defined 300
in the XML schema 301

2.1.9.2 RTT Measurement Loop 302

2.1.9.2.1 ChallengeRequest 303

The payload for the ChallengeRequest is the following byte sequence. 304

Byte 0 1-4 5-24

Description i TargetSessionId,
encoded as a 32-bit
integer in big-endian
byte order

R2*i

 305

2.1.9.2.2 ChallengeResponse 306

The payload for the ChallengeResponse is the following byte sequence. 307

Byte 0 1-4 5-24

Description i AnchorSessionId,
encoded as a 32-bit
integer in big-endian
byte order

R2*i+1

 308

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 10 of 11

3 Octopus Bindings 309

3.1 Constraints 310

An Octopus control can signal that it requires a proximity measurement to be done by 311
carrying a ProximityRequired constraint in an ESB. 312
The ProximityRequired constraint is in the spatial constrains category, indicated by 313
the local flag SPATIAL_CONSTRAINT as specified in §3.3.2.1 of [8pus]. 314
The constraint entry in the ESB has the following format: 315
 316

Name Type Description

ProximityRequired Integer Expected freshness of the proximity measurement
in seconds, or 0 if there is no fixed expected
freshness. The expected freshness is the amount
of time elapsed, at the time of measurement,
since the last valid under-threshold proximity
measurement of the peer target.

 317

3.2 Control Context 318

When a running control signals that it requires a proximity measurement by carrying 319
a ProximityRequired constraint described in §3.1, in a NEMO protocol session such 320
as the License Transfer protocol defined in [MCS], the host application SHALL reveal 321
the date of the last valid proximity check between the host and the session‟s peer 322
NEMO node in the context of that running control. The Host Object path for this value 323
is Sink/Proximity/LastProbe, as specified in §11 of [MCS]. The value is of type 324
Integer, representing the number of minutes elapsed since January 1, 1970 00:00:00 325
(UTC). The most significant bit MUST be 0. It contains the date of the last valid 326
proximity check of the target that is the NEMO peer of the ongoing NEMO protocol 327
session. 328

Copyright (c) Marlin Developer Community, 2003-2012. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 11 of 11

Appendix: XML Schema and WSDL File Names 329

 A.1: proximity-check.xsd 330

proximityoverudp.xsd 331

 A.2: proximity-check.wsdl 332

 333

