

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved
Refer to Notices on page 2 for important legal information

Page 1 of 33

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

Marlin – Simple Secure Streaming 12

Specification 13
Version 1.4 14
FINAL 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
Source Marlin Developer Community
Date January 25, 2017

29

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 2 of 33

Notice 30

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO REPRESENTATION OR 31
WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE 32
COMPLETENESS, ACCURACY, OR APPLICABILITY OF ANY 33
INFORMATION CONTAINED IN THIS DOCUMENT. THE MARLIN 34
DEVELOPER COMMUNITY (“MDC”) ON BEHALF OF ITSELF AND ITS 35
PARTICIPANTS (COLLECTIVELY, THE "PARTIES") DISCLAIM ALL 36
LIABILITY OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, ARISING 37
OR RESULTING FROM THE RELIANCE OR USE BY ANY PARTY OF THIS 38
DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. THE PARTIES 39
COLLECTIVELY AND INDIVIDUALLY MAKE NO REPRESENTATIONS 40
CONCERNING THE APPLICABILITY OF ANY PATENT, COPYRIGHT 41
(OTHER THAN THE COPYRIGHT TO THE DOCUMENT DESCRIBED 42
BELOW) OR OTHER PROPRIETARY RIGHT OF THIS DOCUMENT OR ITS 43
USE, AND THE RECEIPT OR ANY USE OF THIS DOCUMENT OR ITS 44
CONTENTS DOES NOT IN ANY WAY CREATE BY IMPLICATION, 45
ESTOPPEL OR OTHERWISE, ANY LICENSE OR RIGHT TO OR UNDER 46
ANY PATENT, COPYRIGHT, TRADEMARK OR TRADE SECRET RIGHTS 47
WHICH ARE OR MAY BE ASSOCIATED WITH THE IDEAS, TECHNIQUES, 48
CONCEPTS OR EXPRESSIONS CONTAINED HEREIN. 49

Use of this document is subject to the agreement executed between you and 50
the Parties, if any. 51

Any copyright notices shall not be removed, varied, or denigrated in any 52
manner. 53

Copyright © 2003 - 2014 by MDC, 415-112 North Mary Avenue #383 Sunnyvale, CA 54
94085, USA. All rights reserved. Third-party brands and names are the property 55
of their respective owners. 56

Intellectual Property 57

A commercial implementation of this specification requires a license from the Marlin 58
Trust Management Organization. 59

Contact Information 60

Feedback on this specification should be addressed to: editor@marlin-61
community.com 62
 63

64

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 3 of 33

Contents 65
 66
1 Introduction ... 4 67

1.1 Document Organization .. 4 68
1.2 Conformance Conventions .. 4 69
1.3 Namespaces and Identifiers .. 4 70

1.3.1 Identifiers ... 4 71
1.3.2 Namespaces and Notation ... 4 72

1.4 Data Structures and Types Notation.. 5 73
1.4.1 Notation ... 5 74
1.4.2 Bit/Byte Order... 5 75

1.5 Abbreviations .. 5 76
1.5.1 List of Abbreviations ... 5 77

1.6 Terms and Definitions ... 5 78
1.7 References ... 6 79

1.7.1 List of referenced documents .. 6 80
2 Overview (Informative) .. 8 81

2.1 Handling of Unencrypted Content ... 9 82
2.2 Protocol flow ... 10 83

3 MS3 Protocol .. 12 84
3.1 TLS Profile for MS3 .. 12 85

3.1.1 ClientHello and ServerHello .. 13 86
3.1.2 Cipher Suite ... 13 87
3.1.3 Server Certificate.. 13 88
3.1.4 Client Certificate ... 13 89

3.2 HTTP Binding for MS3 .. 13 90
3.3 Marlin Template Variables for MS3 ... 15 91
3.4 MS3 Parameter Encodings ... 16 92

3.4.1 MS3 Action Token .. 16 93
3.4.2 MS3 Compound URI .. 16 94

3.4.2.1 “ms3”, “ms3h” and “ms3hs” URI schemes .. 17 95
3.4.3 MS3 Manifest File ... 17 96

3.5 Stream Access Statement (SAS) .. 18 97
3.5.1 Handling of SAS ... 18 98
3.5.2 Client/Server Processing for “ms3h” or “ms3hs” URI schemes 18 99
3.5.3 Definition of SAS .. 19 100
3.5.4 Default Output Control .. 22 101

4 Triggering MS3 Clients.. 23 102
4.1 Triggering MS3 Clients via Action Token ... 23 103

4.1.1 Use of an AT in Open IPTV Forum context (using OIPF DRM Agent plugin) 104
(Informative) ... 24 105

4.2 Triggering MS3 Clients via Compound URI ... 25 106
4.3 Triggering MS3 Clients via the MS3 Manifest File ... 26 107
4.4 Sample Java script to trigger MS3 Client (Informative) .. 27 108

5 Annex 1: Alternative client-side MS3 architecture (Informative).................................... 29 109
6 Annex 2: XML Schemas .. 30 110

6.1 Marlin Broadband Action Token Schema .. 30 111
6.2 MS3 Action Token .. 32 112

113 114

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 4 of 33

1 Introduction 115
This document describes a simple and secure solution to enable a media streaming 116
service to authenticate a streaming client to consume content. This specification 117
presents a solution that re-uses existing standards such as HTTP and Transport 118
Layer Security (TLS) to deliver information to the authenticated client. 119

1.1 Document Organization 120
This document is organized as follows: 121

• (This) introduction, including abbreviations, definitions and references. 122
• An overview 123
• Transport Layer Security (TLS) setup and the definition of Stream Access 124

Statement (SAS) 125
• Triggering MS3 126
• Handling of content and SAS 127

1.2 Conformance Conventions 128
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 129
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this 130
specification are to be interpreted as described in IETF RFC 2119 [RFC2119]. 131

1.3 Namespaces and Identifiers 132
This specification defines schemas conforming to XML Schemas [Schema] and 133
normative text to describe the syntax and semantics of XML-encoded objects and 134
protocol messages. In cases of disagreement between the schema documents and 135
the schema listings in this specification the schema documents take precedence. 136
Note that in some cases the normative text of this specification imposes constraints 137
beyond those indicated by the schema documents. 138

1.3.1 Identifiers 139
The protocol version communicated between an MS3 Client and MS3 Service 140
reflects the specification version implemented by the client. The following table 141
summarizes the protocol identifier and its value defined in this version of 142
specification: 143
 144
Protocol Identifier Version
MS3 Version 1.0
MS3 Version 1.2

 145
URI “urn:marlin:ms3:1-0” indicates the compatibility to version 1.0 and 1.1 of this 146
specification, with protocol version 1.0 supported. URI “urn:marlin:ms3:1-2” indicates 147
the compatibility to version 1.2, 1.3 and 1.4 of this specification, with protocol version 148
1.2 supported. 149

1.3.2 Namespaces and Notation 150
The following table summarizes the normative schema defined by this specification 151
and their XML namespace URIs. These URIs MUST be used by implementations of 152
this specification: 153
 154

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 5 of 33

Prefix XML Namespace Description
ms3: urn:marlin:ms3:1-

0:services:schemas:streaming:action-token

See §6.2

 155
The table below summarizes the external schemas used in this specification: 156
 157
Prefix XML Namespace Description
bsa: urn:marlin:broadband:1-2:nemo:services:action-

token
[MBB] See §6.1

xsi: http://www.w3.org/2001/XMLSchema-instance [Schema]
 158
As a convention throughout this document we use the namespace prefixes described 159
above to qualify XML elements and attributes which are specified elsewhere. That is 160
the typographical convention is: <MarlinElement>, <ns:ForeignElement>, 161
XMLAttribute, Datatype, OtherKeyword. 162

1.4 Data Structures and Types Notation 163

1.4.1 Notation 164
The abstract type notation used in this document uses the syntax: 165
<name>: <type>, where <type> is of the form: <value-type> (size-in-bits) for single 166
values, <value-type> (size-in-bits) [array-size] for arrays of values, or { … } for 167
compound data structures. 168
The notation <type> [n] means an array of <n> elements of type <type>. The notation 169
<type> [] means an array with a variable number of elements of type <type>. 170

1.4.2 Bit/Byte Order 171
All data in this specification are presented with the most significant bit (or byte) on the 172
left hand side and the least significant bit (or byte) on the right hand side. 173
Also, all data in this specification are encoded using the big-endian byte order (also 174
known as network byte order) and all bit vectors are multiples of 8 bit bytes in big-175
endian byte order. 176

1.5 Abbreviations 177

1.5.1 List of Abbreviations 178
AT Action Token
BT Business Token
CDN Content Distribution Network
C-URIT URI Template for Content URL
C-URL Content URL
MS3 Marlin Simple Secure Streaming
MIME Multipurpose Internet Mail Extensions
NEMO Networked Environment for Media Orchestration
SAS Stream Access Statement
S-URL Stream Access Statement URL
TLS Transport Layer Security

1.6 Terms and Definitions 179
Client The Client consists of Media Player and MS3 Client.

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 6 of 33

Compound URI A combined encoding of the S-URL and C-URIT
parameters, in the form of S-URL “#” C-URIT.

MS3 Client Implementation receiving and using Stream Access
Statements to gain access to, and allow rendering of,
content.

MS3 Service Service that supplies Stream Access Statements to MS3
Clients

 180
Please refer to the Terms and Definitions introduced in [MBB]. 181

1.7 References 182

1.7.1 List of referenced documents 183
Normative References 184
[MBB] Marlin Broadband Delivery System Specification, Version1.2
[MCS] Marlin – Core System Specification, Version1.3
[MOC] Marlin – Output Control Specification, Version1.0
[MURIT] URI Templates for Marlin, Version 1.0
[HTTP] R. Fielding, J. Gettys, J. Mogul, et. Al., Hypertext Transfer

Protocol -- HTTP/1.1. RFC 2616.
http://www.ietf.org/rfc/rfc2616.txt

[HTTPTLS] HTTP Over TLS, IETF RFC 2818.
http://www.ietf.org/rfc/rfc2818.txt

[PKIX] R. Housley, W. Polk, W. Ford, D. Solo. Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. RFC 3280. http://www.ietf.org/rfc/rfc3280.txt

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate
Requirement Levels, IETF RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt.

[RFC4281] The Codecs Parameter for "Bucket" Media Types, IETF RFC
4281, November 2005.
http://www.ietf.org/rfc/rfc4281.txt

[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234, January 2008.
http://www.ietf.org/rfc/rfc5234.txt

[Schema] XML Schema Part 1: Structures. W3C Recommendation. D.
Beech, M. Maloney, N. Mendelsohn, H. Thompson. May
2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

[TLS] The Transport Layer Security (TLS) Protocol version 1.2,
IETF RFC 5246

[TLSAES] AES Ciphersuites for TLS, IETF RFC 3268.
http://www.ietf.org/rfc/rfc3268.txt

[TLSAES-2] E. Rescorla. TLS Elliptic Curve Cipher Suites with SHA-
256/384 and AES Galois Counter Mode (GCM). RFC 5289.
http://www.ietf.org/rfc/rfc5289.txt

[FIPS186]

NIST, "Digital Signature Standard (DSS)", FIPS PUB 186-4,
July 2013,
<http://dx.doi.org/10.6028/NIST.FIPS.186-4>.

[URI] T. Berners-Lee, R. Fielding, L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986.
http://www.ietf.org/rfc/rfc3986.txt

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 7 of 33

[SHA1] FIPS PUB 180-1. Secure Hash Standard. U.S. Department of
Commerce/National Institute of Standards and Technology.
http://www.itl.nist.gov/fipspubs/fip180-1.htm

 185
186

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 8 of 33

2 Overview (Informative) 187
Figure 1 provides an architectural overview of Marlin Simple Secure Streaming 188
(MS3) technology for delivering a Stream Access Statement (SAS) to MS3 Clients 189
via Transport Layer Security (TLS). Note the 1.0 protocol version corresponding to 190
this figure, as this document introduces new HTTP based and HTTPS based 191
technologies for delivering the SAS. 192
 193
 194

 195
Figure 1: Architectural Overview of MS3 (protocol version 1.0)

In this figure, the Media Service supplies the Browser with content location 196
information (C-URL) and the location of an MS3 Service (S-URL). An MS3 Service 197
supplies Stream Access Statements to authorized clients. An SAS contains 198
information required to acquire and consume the content referenced by the C-URL. 199
The mechanism by which the Media Service delivers this information to a browser is 200
out of scope for this specification, but some possible techniques are described in §4. 201
 202
Also the internal architecture of the client is out-of-scope for this specification, but 203
logically a browser plug-in forwards the S-URL and the C-URL to the MS3 Client and 204
the Media Player respectively. The Media Player uses the C-URL to obtain the 205
content from the Content Server, potentially via a Content Distribution Network 206
(CDN), and passes the stream into its media processing pipeline. 207
 208
Control information is required to render the (encrypted or plaintext) stream. To get 209
this control information, the Media Player relies on the MS3 Client to securely resolve 210
the S-URL with the MS3 Service. The S-URL embeds transaction context information 211
(such as a Business Token [MBB]) required by the MS3 Service to respond to this 212
request. A successful run of this protocol exchange delivers an SAS to an authorized 213
MS3 Client. Typically an SAS contains the content key in the case of protected 214
content and output control flags, and this information in used by the media 215

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 9 of 33

processing pipeline to consume the content stream and enforce output controls. The 216
SAS optionally contains an Authenticator to further ensure that access to the content 217
is limited to the authorized client, i.e., only the client with possession of the content 218
key and the authenticator can obtain and render the content. 219

2.1 Handling of Unencrypted Content 220
In some markets it is considered sufficiently secure to control access to a certain 221
Content resource instead of encrypting the Content. In these cases the URL from 222
which the Content is retrieved from the CDN typically embeds an Authenticator and is 223
given only to a client that is entitled to have access to the Content and trusted to 224
handle this URL and the Content as intended by the Service. When the URL is used 225
by the Client to retrieve the Content from the CDN, the Authenticator is parsed by the 226
CDN and used to ensure that access to the resource is limited in some way. The 227
resource may for example only be served a limited number of times, within a limited 228
timeframe or to a specific Client IP address. 229
 230
It is NOT in scope for this specification to specify an access control mechanism or 231
define the Authenticator. However this specification may be used to securely 232
authenticate a Client, deliver an (opaque) Authenticator and associate an SAS with 233
content that is not encrypted. The architecture is depicted in Figure 2. 234
 235

 236
Figure 2: Architecture for unencrypted Content (protocol version 1.0)

 237
Instead of sending S-URL and C-URL to the Browser, the Media Service can send an 238
S-URL and content location information that consists of a URI Template (C-URIT) to 239
the Browser. The MS3 Client then resolves the S-URL to obtain the SAS containing 240
an Authenticator. The Authenticator is then used to fill in the URI Template in the C-241
URIT in order to obtain an opaque C-URL. This ensures secure delivery of the 242
Authenticator and handling of the Content is in compliance with this specification. 243
 244

245

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 10 of 33

2.2 Protocol flow 246
 247
The application protocol binding that an MS3 Client engages in to request or 248
purchase a given content item is outside the scope of this specification. However, 249
once the service is triggered to request an SAS, the MS3 Client engages in the HTTP 250
binding defined in this specification so as to acquire an SAS and access the 251
corresponding content. The following figure depicts the general application protocol 252
flow. 253
 254

 255
Figure 3: Protocol Sequence Diagram 256

 257
1. The Browser communicates with the Media Server to request content for 258

playback. The mechanism by which this is accomplished is outside the scope 259
of this specification 260

2. The Media Service supplies the Browser with an S-URL and C-URIT. 261
3. The Browser passes the S-URL and C-URIT to the Media player. 262
4. The Media Player initiates the MS3 Client with the S-URL. The mechanism by 263

which this is accomplished is out of scope for this specification. 264
5. The client MAY establish a TLS session with the MS3 service. This will 265

depend on the protocol version and URI scheme. 266
6. The MS3 Client resolves the S-URL with the MS3 Service. 267
7. Given the request from MS3 Client, the MS3 Service sends an SAS in the 268

response. 269
8. When an MS3 Client receives the successful response, the SAS could 270

contain an Authenticator. MS3 Client passes the Authenticator and usage 271
information to the Media Player. 272

9. The client accesses to the content resource (e.g. CDN) by resolving C-URL. 273
10. A successful response from resolving C-URL results in the content 274

corresponding to the SAS acquired in the step 7. 275

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 11 of 33

The scope of this specification is the syntax and encoding of the service and content 276
location information, the protocol interface between the MS3 Service and the MS3 277
Client and the semantics of the SAS. 278
 279

280

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 12 of 33

3 MS3 Protocol 281
The MS3 protocol defined in this specification is designed to be simple to implement. 282
The protocol uses HTTP (with or without TLS) to securely deliver a SAS to an 283
authorized receiver. 284
 285
For protocol version 1.0 the MS3 service location URL (S-URL) SHALL be formatted 286
with one of the following URI schemes: 287
• the “https” URI scheme, as specified in §2.4 of [HTTPTLS] or, 288
• the “ms3” URI scheme, as defined in §3.4.2.1 of this specification. The “ms3” URI 289

scheme SHALL only be used with a Compound URI. It is RECOMMENDED to 290
use the “ms3” URI scheme (in lieu of the “https” URI scheme) whenever a 291
Compound URI is used. 292

For protocol version 1.2 the MS3 service location URL (S-URL) SHALL be formatted 293
with one of the following URI schemes: 294
• the “ms3h” URI scheme, when SAS request is made via POST over HTTP 295
• the “ms3hs” URI scheme, when the request is made over HTTPS without client 296

authentication 297
• the “ms3hsa” URI scheme, when the request is made over HTTPS with client 298

authentication using the client’s NEMO certificate 299
Note that no “http” or “https” URI scheme is provided for the schemes introduced in 300
this specification 301
 302
Each S-URL SHALL be a unique identifier that logically resolves to an SAS. The 303
entity that constructs the S-URL SHALL ensure that there is negligible probability that 304
the same identifier (S-URL) will resolve to a different data object (SAS). 305
 306
The MS3 protocol SHALL consist of three steps: 307

1. For protocol version 1.0, or version 1.2 with the “ms3hsa” URI scheme, setup 308
a mutually authenticated TLS session as specified in [TLS] using the TLS 309
profile as defined in §3.1 or resume a previous session established as in §3.2 310
where client and server both implement the server state-less session 311
resumption protocol defined in https://tools.ietf.org/html/rfc5077, or, for 312
protocol 1.2, optionally (if the URI scheme is “ms3hs”) setup a server-313
authenticated TLS session using any implementation-chosen TLS profile. 314

2. Execute the HTTP protocol binding as defined in §3.2, 315
3. Receive and process the SAS, described in §3.5.2.1. 316

3.1 TLS Profile for MS3 317
The figure below describes the full handshake protocol of TLS used in version 1.0 of 318
the protocol. All the messages MUST be present and in conformance with [TLS] and 319
this section. In the following description the MS3 Client is acting as a TLS client. 320
 321

Client Server

ClientHello -------->
 ServerHello
 Certificate
 [ServerKeyExchange]
 CertificateRequest
 <-------- ServerHelloDone
Certificate
ClientKeyExchange

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 13 of 33

CertificateVerify
[ChangeCipherSpec]
Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
Application Data <-------> Application Data

Figure 4: TLS Handshake

3.1.1 ClientHello and ServerHello 322
The TLS client and TLS server MAY send TLS 1.0 or later as the TLS version in 323
ClientHello and ServerHello. 324
TLS 1.0 SHALL be retired at the time set by the PCI Council 325
(https://www.pcisecuritystandards.org/), at which point services SHALL support 326
TLS1.2. 327

3.1.2 Cipher Suite 328
Conforming implementations of the specification SHALL support the 329
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite as defined in [TLSAES]. 330
Conforming implementations SHOULD also support the 331
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher suite defined in the 332
references of [TLSAES-2] with the NIST P-256 elliptic curve [FIPS186]. 333

3.1.3 Server Certificate 334
The X.509v3 certificate of the TLS server SHOULD have the keyEncipherment key 335
usage set (Note: According to [TLS], if the key usage extension is present the 336
keyEncipherment bit MUST be set). The TLS client SHOULD validate the TLS server 337
certificate in accordance with [PKIX]. 338

3.1.4 Client Certificate 339
The X.509v3 certificate of the TLS client SHOULD have digitalSignature key usage. 340
 341
The TLS client MAY use a NEMO Signing Certificate as defined in §9.4.1 of [MCS]. 342
When the TLS client uses a NEMO certificate, the Certificate Revocation Lists 343
SHALL conform to the profile described in §9.2 of [MCS]. 344
 345
When the MS3 Client uses a NEMO certificate, the client certificate MUST be 346
validated by the service according to the process described in §9.1.4 of [MCS] 347
otherwise the certificate MUST be validated in accordance with [PKIX], except that 348
the service SHALL NOT resolve the CRL from the CRL Distribution Point indicated in 349
the client certificate but instead use its own copy of the then current CRL. This latter 350
CRL is available from the Marlin Trust Management Organization at 351
https://www.marlin-trust.com/. 352
 353

3.2 HTTP Binding for MS3 354
This protocol binding is triggered via web interactions between a browser and a web-355
based media service. This following text defines the processing rules of this binding. 356
 357
Implementation guidance is given in §4 that describes common mechanisms that 358
dynamically interrogate the capabilities of an MS3 Client and pass the requisite 359

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 14 of 33

parameters, S-URL and C-URIT, through to the underlying implementation of this 360
specification. 361
 362
Implementations SHOULD support one of the parameter encodings defined in §3.4 363
so as to enable a predictable MS3 triggering mechanism (i.e., as described in §4). 364
 365
In order to resolve the S-URL, the MS3 Client MAY first have to establish a TLS 366
session with the MS3 Service depending on the URI scheme. 367
 368
Upon connection (possibly with TLS session establishment), the client MUST issue 369
an HTTP request [HTTP] to the resource specified by the S-URL. In this request, the 370
client SHOULD include an entity header to indicate the MS3 protocol version 371
supported by the client. In the event the client does not supply this entity header, the 372
service SHALL assume protocol version 1.0. 373
 374
If clients indicate the protocol version, clients using the “ms3” URI scheme SHALL 375
signal protocol version 1.0, whereas client using the “ms3h”, “ms3hs”, or “ms3hsa” 376
URI scheme SHALL signal protocol version 1.2 377
 378
The syntax of this header follows (see [HTTP] for a description of this grammar): 379
 380
MS3-Version = “X-MS3-Version” “:” 1*DIGIT “.”1*DIGIT 381
 382
The first digit represents the major specification number and the second digit 383
represents the minor specification number. Note that the major and minor numbers 384
MUST be treated as separate integers and that each MAY be incremented higher 385
than a single digit. For example, the following header represents major version 1 and 386
minor version 10; 387
 388
 X-MS3-Version: 1.10 389
 390
For MS3 1.0 Protocol: 391

• Upon TLS session establishment, the client MUST issue an HTTP GET 392
request to the resource specified by the S-URL 393

 394
For MS3 1.2 Protocol: 395

• The Client MUST send the request to the S-URL as a POST. The Content-396
Type header MUST be set to application/json. The body of the request MUST 397
contain a JSON payload consisting of a JSON object with the following fields: 398

• “version”: an integer specifying the client protocol version. This field MUST be 399
equal to 1. 400

• “nonce”: a base64-encoded payload containing a client-generated nonce. It is 401
recommended that this value be a random number of 64 bits or more. This 402
nonce value MUST NOT exceed 32 bytes. 403

• “clientInfo”: a JSON object representing the client information. This object 404
MUST include an “octopusNode” field, and MAY contain other fields. The 405
“octopusNode” field MUST be a base64-encoded Octopus public personality 406
node representation, including its signature, as specified in [MBB]. 407

 408
If the Client supports ‘skey’ extensions with type=1, as defined in §3.5.2, it SHOULD 409
signal it by including the following entity header in their requests: 410
X-MS3-Options: kdf-1 411

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 15 of 33

If this entity header is not included in the request, the Service MUST assume that the 412
client does not support ‘skey’ extensions with type=1 and MUST NOT include such 413
an extension in its response. 414
 415
A successful response from the MS3 Service MUST be signaled with an HTTP 200 416
(OK) response. The body of the HTTP response MUST be an SAS as defined in 417
§3.5.2.1. The HTTP Content-Type entity header MUST signal the MIME type with the 418
following string: 419
 420
 421
Entity Body MIME type

MS3 Stream Access
Statement

application/vnd.marlin.drm.StreamAccessStatement

 422
 423
An unsuccessful response from the MS3 Service SHALL be signaled with a HTTP 424
response code. In the event of an unauthorized request the service SHALL respond 425
with 401 (Unauthorized). The service SHOULD include an HTML document with 426
more information as to the cause of the failure. 427
 428
Once the SAS has been retrieved a client will have sufficient information to acquire 429
and consume the media. The next step is for the client to expand the C-URIT (if 430
necessary) and resolve the C-URL to the content. A C-URIT MUST conform to the 431
syntax and processing rules defined in [MURIT]. An MS3 Client MUST support 432
expanding the C-URIT with template variables defined in §3.3. 433
 434
The client accesses the content resource (e.g. CDN) by resolving the C-URL. The 435
content distribution service determines whether the client is authorized to access the 436
requested resource. The policy by which the service makes this decision is outside 437
the scope of this specification however it is likely that the service will factor in the 438
Authenticator information encoded in the C-URL. 439
 440

3.3 Marlin Template Variables for MS3 441
The variable namespace for MS3 variables is “s”. 442
The general syntax for an MS3 variable is: 443
 444
ms3-var = "authenticator" 445
 446
The value of the variable is the Authenticator field of an SAS. The C-URIT parameter 447
MAY include the above template variable. 448
 449
The following is an example of C-URIT that includes a template to be expanded with 450
an Authenticator (‘006789F5’) as provided in an SAS. 451
 452
Input
(C-URIT)

http://www.bok.net/music/get-token?auth=
{s:authenticator}&cid=8967F56D

Output
(C-URL)

http://www.bok.net/music/get-token?auth= 006789F5&cid=8967F56D

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 16 of 33

3.4 MS3 Parameter Encodings 453
The application protocol defined by this specification requires two distinct parameters 454
to be passed into the underlying implementation, S-URL and C-URIT. So as not to 455
dictate the client architecture a variety of parameter encodings are defined in this 456
section. A conformant implementation MAY support any of these parameter 457
encodings. 458

3.4.1 MS3 Action Token 459
MS3 MAY be triggered using an Action Token. The Client MAY support handling of 460
the Action Token. 461
The Action Token defined by this specification is an extension of the schema defined 462
in §6.1. The schema defines the SASAcquisitionType <bsa:Action>. Instances of this 463
<bsa:Action> element MUST specify the xsi:type attribute with a value of 464
ms3:SASAcquisitionType. 465
 466
The <bsa:Action> element MUST contain a <ms3:SASLocation> element. 467
The contents of the <ms3:SASLocation> element MUST be a URL. The 468
corresponding scheme is defined in §6. 469
 470
The MIME type defined below MAY be used to signal the delivery of an Action Token 471
bearing a SASAcquisitionType <bsa:Action> element. 472
 473
Entity Body MIME type

MS3 Action Token application/vnd.marlin.drm.actiontoken2+xml
 474

3.4.2 MS3 Compound URI 475
MS3 MAY be triggered using a Compound URI. The client MAY support handling of 476
the Compound URI. 477
The Compound URI is a safe combined encoding of both the S-URL and C-URIT 478
parameters. The Compound URI SHOULD use the “ms3” URI scheme as defined in 479
§3.4.2.1 or the “ms3h(s)” URI schemes defined in §3.4.2.1. 480
 481
The Compound URI SHALL be formatted as following: 482
 483
 Compound-URI = S-URL “#” C-URIT 484
 485
The Compound URI MUST be a valid URI. Therefore, the encoding of the fragment 486
SHALL adhere to the percent-encoding rules defined in [URI]. The following example 487
demonstrates the encoding of a Compound URI that includes template variables. 488
 489
ms3://sas.example.com/getsas/CAFEBEE#http://www.bok.net/stream/get-490
token?auth=%7bs:authenticator%7d&cid=8967F56D 491
 492
Implementations that support this encoding SHALL be capable of parsing the 493
Compound URI at the fragment (“#”) delimiter to derive distinct S-URL and C-URIT 494
parameters. Subsequent processing of the resultant C-URIT SHALL decode percent-495
encoded characters and adhere to the expansion rules defined in §3.3. 496
 497

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 17 of 33

3.4.2.1 “ms3”, “ms3h, “ms3hs” and “ms3hsa” URI schemes 498
Syntax definitions are given using the Augmented BNF (ABNF) for syntax 499
specifications [RFC5234]. 500
 501
The URI scheme's keywords in the following syntax description are case-insensitive. 502
The syntax of the URI whose URI scheme is any of an "ms3", "ms3h", "ms3hs" or 503
“ms3hsa” URI follows the URI base syntax defined in [URI] and is formally described 504
below: 505
 506
 ms3-uri = scheme ":" hier-part ["?" query] ["#" fragment] 507
 scheme = one of "ms3",”ms3h”, “ms3hs”, or “ms3hsa” 508
 hier-part = as defined in [URI] 509
 query = as defined in [URI] 510
 fragment = C-URIT 511
 C-URIT = as defined in §3.4.2 512
 513
The “ms3”, “ms3hs” and “ms3hsa” protocol identifications in this URI scheme result in 514
equivalent behavior as the “https” protocol identification in the “https” URI scheme. 515
The “ms3h” protocol identification in this URI scheme results in equivalent behavior 516
as the “http” protocol identification in the “http” URI scheme. 517

3.4.3 MS3 Manifest File 518
MS3 MAY be triggered using an MS3 Manifest file. The Client MAY support handling 519
of the MS3 Manifest file. 520
The manifest is a text document that MUST include S-URL and C-URIT fields. The 521
grammar of these fields is defined below. 522
 523
Delivery of a manifest file SHALL be signaled using the following MIME type: 524
 525
Entity Body MIME type

MS3 Manifest File application/vnd.marlin.drm.StreamAccessDescriptor
 526
The contents of an MS3 Manifest file SHALL adhere to the following grammar (using 527
the grammar defined in [HTTP]): 528
 529

one or more line separated by \r\n 530
line = field-name ":" field-value 531
field-name = LWS 1*(ALPHA | DIGIT | "_" | "-") 532
field-value = any ascii char except control chars 533

 534
The line for S-URL SHALL be set in the MS3 Manifest file as following: 535

field-name = “S-URL” 536
field-value = the value of the S-URL parameter 537

 538
The line for C-URIT SHALL be set in the MS3 Manifest file as following: 539

field-name = “C-URI-Template” 540
field-value = the value of the C-URIT parameter 541

 542
The content type of the media stream delivered once the C-URIT is expanded and 543
resolved SHALL be signaled in this manifest as follows: 544
 field-name = "Content-Type" 545

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 18 of 33

 field-value = the MIME Type and codec information following the syntax defined in 546
 [RFC4281] 547
 548

3.5 Stream Access Statement (SAS) 549
An MS3 Service releases key material and consumption constraints to an authorized 550
MS3 Client. 551

3.5.1 Handling of SAS 552
A conformant MS3 Client SHALL only cache an SAS for a reasonable retention 553
period so as to enable content rendering. After playback has ended or stopped (e.g. 554
by user interaction), a conformant MS3 Client SHALL discard the corresponding SAS. 555
Notwithstanding the foregoing, an MS3 Client MAY continue using a retained SAS 556
when playback is temporarily suspended (e.g., by a user pausing playback). 557
 558

3.5.2 Client/Server Processing for “ms3h”, “ms3hs” and “ms3hsa” 559
URI schemes 560

• The Server SHALL parse the Client request, check that the JSON payload 561
version is 1, and that all the required fields of the JSON payload are present 562
and syntactically correct. 563

• The Server SHALL determine the resources needed to generate the 564
requested SAS payload. If an SAS cannot be determined, the Server shall 565
return an HTTP error. 566

• The Server SHALL validate the signature of the Octopus personality node 567
object as specified in [MBB]. If the signature validation is not successful, the 568
Server SHALL return an HTTP error. 569

• The Server MAY inspect attributes of the Client’s Octopus personality node 570
object in order to decide if its own policy for responding to Client requests 571
allows an SAS response to be sent to the Client. Based on this, the Server 572
MAY return an HTTP error response. 573

• The Server MUST generate a cryptographically-random 128-bit session key 574
session_key. 575

• The SAS payload MUST include an ‘skey’ extension and a ‘sign’ extension as 576
defined in sections 2.1 and 2.2. The ‘sign’ extension MUST be the last 577
extension in the SAS. 578

• Each key in the SAS response MUST be encrypted (in place) with a key 579
encryption key (KEK) using the AES-128 cipher in ECB mode. If the ‘type’ 580
field of the ‘skey’ extension carrying the session key is 0, the KEK is the 581
session key itself. If the ‘type’ field is 1, the KEK is derived from the 582
session_key, as defined in section 3.5.2.1. 583

• When the Client receives the response carrying the SAS, it MUST check that 584
the SAS has a valid ‘skey’ extension and ‘sign’ extension, and that the ‘type’ 585
fields of those extensions are both supported (only the value 0 is currently 586
defined). The client MUST then decrypt the encrypted_session_key from the 587
‘skey’ extension, then verify the signature carried in the ‘sign’ extension. If the 588
signature verification fails, the entire response MUST be discarded. 589

 590
Extensions defined for “ms3h”, “ms3hs” and “ms3hsa” URI schemes: 591
 592

• ‘skey’ extension 593
Extension type: 0x736b6579 (‘skey’) 594

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 19 of 33

Extension payload: 595
Field Name Field

Size
(bytes)

Field Payload

type 1 0 or 1
encrypted_session_key variable 128-bit AES session_key encrypted with

the Octopus Scuba Sharing RSA public
key, using RSA OAEP.

 596
 597

• ‘sign’ extension 598
Extension type: 0x7369676e (‘sign’) 599
Extension payload: 600
Field Name Field

Size
(bytes)

Field Payload

type 1 0
hmac 20 HMAC-SHA1 signature of the concatenation of

the entire SAS payload up to, but not including,
the ‘sign’ extension followed by the Client-
supplied nonce

 601

3.5.2.1 Derivation of the KEK 602
The keys carried in the SAS when using the “ms3h”, “ms3hs” or “ms3hsa” URI 603
schemes are encrypted with a key encryption key (KEY) which is derived from the 604
session_key carried in an ‘skey’ extension. 605
The KEK value is derived as follows: 606
KEK = TRUNCATE(SHA1(session_key)) 607
Where,  608

• session_key is a 128-bit key  609
• SHA1 is the one-way hash function defined in [SHA1]  610
• TRUNCATE takes the 128 most significant bits of the 160-bit output of SHA1 611

 612

3.5.3 Definition of SAS 613
The structure and semantics of this information is expressed in the form of a Stream 614
Access Statement (SAS) as defined below. 615
 616
SAS: {
 keyCount: unsigned int (32)
 keys: Key [keyCount]
 authenticatorSize: unsigned int (32)
 authenticator: bit (8) [authenticatorSize]
 controlFlags: bit (8)
 usageRule: {
 outputControl: {
 outputControlValue: bits (32)
 outputControlFlags: bits (32)
 }
 }
 extensionCount: unsigned int (32)
 extensions: Extension [extensionCount]
}

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 20 of 33

Key: {
 contentId: bit (160)
 keyData: bit (128)
}

Extension: {
 size: unsigned int (32)
 type: bit(32)
 criticalFlag: bit (8)
 payload: bit (8) [size-9]
}

 617

• keyCount: number of keys in the keys array. In case of unencrypted content, 618
the keyCount SHALL be set to 0. 619

• keys: array of zero or more Key. Each Key contains a contentId and the 620
corresponding content key as keyData. 621

o contentId: 160-bit SHA-1 hash of content identifier included in 622
content. MS3 Client SHALL compute SHA-1 hash of content identifier 623
in content when comparing contentId in SAS. 624

o keyData: content key corresponding to the content identified with 625
contentId 626

• authenticatorSize: the number in bytes of the authenticator. When 627
there is no authenticator, authenticatorSize SHALL be set to 0. 628

• authenticator: opaque service specific data encoded as UTF-8. When the 629
authenticator value is set, the authenticator is used to expand the C-630
URIT into a C-URL as defined in §3.3. Content that is retrieved from a URL 631
composed using the authenticator SHALL be governed according to the SAS, 632
regardless of whether the content is encrypted or not. 633

• controlFlags: bit vector of flags. If bit 0(LSB) is set to 1, the client SHALL 634
NOT retain streamed content (either in encrypted or plaintext form) 635
corresponding to this SAS except for a reasonable retention period to allow 636
for buffering so as to preserve the fidelity of the content rendering. The 637
remaining bits, bit1-bit7 are reserved. All reserved bits SHALL be set to 0. 638

• usageRule: information used to enforce the governance requirements of the 639
content and its consumption. 640

• outputControl: data structure including outputControlValue and 641
outputControlFlags. The output control requirements carried in an SAS 642
SHALL be enforced or the corresponding content SHALL NOT be consumed. 643

• outputControlValue: bit fields indicating the value of zero or more output 644
control fields. The meaning of the fields and their possible values are defined 645
in §4 of [MOC]. The fields are encoded as follows: 646

647

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 21 of 33

 648
 649

Bit range

(0 is the least significant bit)

Output Control Technology Field name

0 BasicCCI DigitalOnlyToken

1..4 BasicCCI Reserved

5 BasicCCI EPN

6..7 BasicCCI CCI

8 BasicCCI ImageConstraintToken

9..10 BasicCCI APS

11 DTCP RetentionMoveMode

12..14 DTCP RetentionState

15 DTCP EPN

16..17 DTCP DTCP_CCI

18 DTCP ImageConstraintToken

19..20 DTCP APS

 650

• outputControlFlags: bit vector of flags indicating which fields are 651
signalled in the outputControlValue. When a flag in this vector is set to 1, 652
the Client SHALL set the output control parameters as specified by the 653
corresponding bit-field in the outputControlValue. When a bit flag in this 654
field is set to 0, the Client SHALL set the corresponding output control 655
parameters as specified by the default in §3.5.4. 656

Flag Bit

(0 is the least
significant)

Output Control Technology Field Name

0 BasicCCI DigitalOnlyToken

1 BasicCCI EPN

2 BasicCCI CCI

3 BasicCCI ImageConstraintToken

4 BasicCCI APS

5 DTCP RetentionMoveMode

6 DTCP RetentionState

7 DTCP EPN

8 DTCP DTCP_CCI

9 DTCP ImageConstraintToken

10 DTCP APS

 657
 658

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 22 of 33

• extensionCount: number of Extensions in the extensions array. In 659
case of there is no Extension, the extensionCount is set to 0. 660

• extensions: array of zero or more Extension. Each Extension contains 661
type, size, criticalFlag, and payload. 662

• type: by convention, the 32-bit identifier for an Extension is written as a 4-663
letter word, where each letter’s 8-bit ASCII code is the corresponding 8-bit 664
byte portion of the identifier. For example, the identifier value 0x61626364 665
(hexadecimal) would be written ‘abcd’, because the ASCII code for ‘a’ is 0x61, 666
etc. 667

• size: entire byte size of the Extension. 668

• criticalFlag: bit vector of flags. An Extension that is marked critical (by 669
the bit 0(LSB) of criticalFlag is set to 1) SHALL be enforced. If an 670
Extension marked as critical is encountered that is not supported or 671
understood, then the content SHALL NOT be rendered. 672

• payload: description of Extension. 673
 674

3.5.4 Default Output Control 675
The default set of BasicCCI is specified in the following table. 676
 677
Name Type Default Value Description
EPN Integer 1 EPN-unasserted
CCI Integer 11 Never Copy
ImageConstraintToken Integer 1 High Definition Analog Output in

High Definition Analog Form
DigitalOnlyToken Integer 0 Output of decrypted content is

allowed for Analog/Digital Outputs
APS Integer 01 APS on: type 1 (AGC)

Table 1: Default output control for Basic CCI
The following table defines the default set of DTCP. 678
 679
Name Type Default Value Description
Retention-Move-mode Integer 1 Non-Retention-mode
Retention_State Integer 111 90 minutes
EPN Integer 1 EPN-unasserted
DTCP_CCI Integer 11 Copy-Never
Image_Constraint_Token Integer 1 High Definition Analog Output in

High Definition Analog Form
APS Integer 01 APS on: Type 1 (AGC)

Table 2: Default output control for DTCP
 680

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 23 of 33

4 Triggering MS3 Clients 681
This section defines common mechanisms by which a media service triggers the 682
application protocol defined in this specification. A conforming client implementation 683
SHOULD implement one of these trigger mechanisms. Regardless of the mechanism 684
by which the S-URL and C-URIT are conveyed to the MS3 Client, use of the content 685
obtained from the C-URL SHALL be subject to the constraints expressed in the SAS 686
obtained from the S-URL. 687

4.1 Triggering MS3 Clients via Action Token 688
As with other Marlin protocols, MS3 MAY be triggered using an Action Token. 689
Clients MAY support handling of this type of Action Token. 690
 691
The Action Token defined in §3.4.1 can be used to initiate the MS3 application 692
protocol. 693
 694
The contents of the <ms3:SASLocation> element SHALL be the S-URL parameter. 695
In addition, the content of this element MAY use the Compound URI encoding 696
defined in §3.4.2. 697
 698
The following is an example of this <bsa:Action> element: 699
 700
<bsa:Action xsi:type="ms3:SASAcquisitionType">
 <ms3:SASLocation>https://www.xyzmovie.com/xyz.SAS?bt=
YCn70D0Av/xt5sXcSj7XWFAAAAEAAAA</ms3:SASLocation>
</bsa:Action>

 701
An MS3 Client SHOULD initiate the protocol binding defined in §3.2 to resolve the 702
URL carried in the <ms3:SASLocation> element. In the case of a Compound URI 703
encoding the MS3 Client SHALL parse the URI to derive the S-URL and C-URIT 704
components. 705
 706

707

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 24 of 33

4.1.1 Use of an AT in Open IPTV Forum context (using OIPF DRM 708
Agent plugin) (Informative) 709
Below is an example demonstrating how MS3 can be incorporated into an OIPF 710
context using existing OIPF mechanisms. The support of the MS3 feature is signaled 711
by an OIPF DRMSystemID with value “urn:marlin:ms3:1-0”. 712
 713
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-714
transitional.dtd"> 715
<html xmlns="http://www.w3.org/1999/xhtml"> 716
<head id="head1"><title>OIPF MS3 Example</title><link type="text/css" rel="stylesheet" href="Stylesheets/style.css" /> 717
<script type="text/javascript"> 718
 719
 function startPlayback() 720
 { 721
 vid = document.getElementById("videoObject"); 722
 723
 //Setup video object with hardcoded C-URL. 724
 vid.data = "videos/movie.odf"; 725
 vid.setFullScreen(1); 726
 vid.play(1); 727
 } 728
 729
 function HandleOnDRMMessageResult(msgID, resultMsg, resultCode) 730
 { 731
 if (resultCode == 0) {startPlayback();} 732
 else {} //SAS download failed. 733
 } 734
 735
 function getSASandPlay() 736
 { 737
 //Assuming OIPF will choose existing Marlin DRMSystemID and use MS3 Action Token as msgType 738
 739
 //Create action token for hardcoded S-URL. 740
 ms3AT = "<bsa:Action xsi:type=ms3:SASAcquisitionType>" 741
 + “<ms3:SASLocation>https://server.com/movie.sas</ms3:SASLocation>" 742
 +"</bsa:Action>"; 743
 744
 drm = document.getElementById("drmagent"); 745
 drm.onDRMMessageResult = HandleOnDRMMessageResult; 746
 drm.sendDRMMessage('application/vnd.marlin.drm.actiontoken2+xml',ms3AT,'urn:dvb:casystemid:19188'); 747
 748
 } 749
 750
 function init() 751
 { 752
 if (detectMS3Support()) 753
 { 754
 getSASandPlay(); 755
 } 756
 } 757
</script> 758
 759
</head> 760
<body onload="init();"> 761
 <div id="videowrapper"> 762
 <object id="videoObject" type="video/mpeg4"> </object> 763
 <object id="drmagent" type="application/drmagent" style="visibility:hidden;"></object> 764
 <object id="capabilities" type="application/oipfCapabilities" style="visibility:hidden;"></object> 765
 </div> 766
</body> 767
</html> 768

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 25 of 33

4.2 Triggering MS3 Clients via Compound URI 769
An MS3 Client that supports the Compound URI trigger SHALL support the 770
parameter encoding defined in §3.4.2. The Compound URI SHALL be used to 771
uniquely associate an SAS with corresponding content when contentID is not 772
specified in an SAS and content for a plaintext form. 773
 774
If C-URIT includes the placeholder for Authenticator, the MS3 Client SHALL use the 775
associated S-URL to retrieve the SAS bearing the Authenticator. The supplied 776
Authenticator SHALL replace the placeholder in the C-URIT. 777
 778
A Client supporting the Compound URI trigger mechanism SHALL support the 779
capability query for the SAS MIME Type. 780
 781
The capability detection SHOULD include a query for the supported codecs. The 782
codec parameter SHALL adhere to the syntax and encoding defined in [RFC4281]. 783
 784
The capability detection SHOULD include a query for the media container format to 785
unambiguously indicate the media format of the content. The media format container 786
parameter SHALL adhere to the generic syntax and encoding defined in [RFC4281]. 787
This media format container parameter has the following syntax: 788
 789
format := "container" "=" mime-type 790
mime-type := The MIME type of the media to be delivered when the content URL is 791
resolved. 792
 793
A Client supporting the Compound URI trigger mechanism SHALL support and 794
process the container parameter query. If the Client does not support the media 795
format designated in the container parameter it SHALL return a negative response 796
when queried. 797
 798
The following sample JavaScript demonstrates capability detection using the HTML5 799
DOM API. This script detects Client support for the Compound URI, container type 800
and codec. 801
 802
if (canPlayType('application/vnd.marlin.drm.StreamAccessStatement;
 container="application/vnd.marlin.drm.pdcf";
 codecs="avc1.42E01E, mp4a.40.2"') == "probably")
 // The underlying implementation. supports the CompoundURI
 803
 804
The Figure 5 is an example usage of Compound URI where step 2 provides S-URL 805
for SAS acquisition, and step 5 provides the Compound URI which is used to 806
associate the SAS with C-URIT to resolve URI Template in step 8. 807
 808

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 26 of 33

 809
Figure 5: Example usage of Compound URI

 810
The Figure 6 is an example usage of Compound URI where step 2 provides the 811
Compound URI which is used for acquisition of SAS and also used to associate the 812
SAS with C-URIT to resolve URI Template in step 7. 813
 814

 815
Figure 6: Example usage of Compound URI

4.3 Triggering MS3 Clients via the MS3 Manifest File 816
MS3 MAY be triggered with the prescribed MIME type and delivering an MS3 817
Manifest file as defined in §3.4.3. 818
 819
An MS3 Client supporting this trigger mechanism SHALL uniquely associate the SAS 820
acquired from S-URL with corresponding content acquired from C-URIT when 821
contentID is not specified in SAS and content for a plaintext form. Specifically when 822
C-URIT includes the placeholder for Authenticator, the MS3 Client SHALL use the 823
associated S-URL to retrieve SAS to acquire Authenticator to process the 824
placeholder in the C-URIT. 825
The example of a MS3 Manifest file follows: 826
 827
S-URL: https://foo.bar/123456789/
C-URI-Template: http://hoge.bar/get-token?authenticator ={s:authenticator}
Content-Type: application/vnd.marlin.drm.pdcf; codecs="avc1.42E01E, mp4a.40.2"
 828
A Client supporting the MS3 Manifest file in the context of HTML5 SHALL return 829
"probably" or “maybe” to the capability query MS3 Manifest file MIME Type. 830
 831
The following sample JavaScript demonstrates capability detection using the HTML5 832
DOM API. This script detects Client support for the MS3 Manifest file. 833
 834
if (canPlayType("application/vnd.marlin.drm.StreamAccessDescriptor")

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 27 of 33

 == "probably")
 // The underlying implementation can be feed the url to the Manifest file
 835
Figure 7 is an example usage of MS3 Manifest file where step 4 provides the MS3 836
Manifest file which is used for acquisition of SAS and also used to associate the SAS 837
with C-URIT to resolve URI Template in step 9. 838
 839

 840
Figure 7: Example usage of MS3 Manifest file

4.4 Sample Java script to trigger MS3 Client (Informative) 841
The following is sample java script which detects Client capability and chooses 842
appropriate mechanism to trigger MS3 Client. 843
<script type="text/javascript">
// MS3 Example
var detectVideoSupport = function (){
 var detect = document.createElement('video') || false;
 this.html5 = detect && typeof detect.canPlayType !== "undefined";
 // test for the various protected packaged content supported by the underlying
 // video implementation
 this.dcf = this.html5 && (detect.canPlayType("application/vnd.oma.drm.dcf") === "maybe"
 || detect.canPlayType("application/vnd.oma.drm.dcf") === "probably");
 return this;
};
var dectectOITFSupport = function (){
 this.oitf = window.oipfObjectFactory !== "undefined" || false;
 // test for content access streaming descriptor support
 this.cas = this.oitf && window.oipfObjectFactory.isObjectSupported(
 "application/vnd.oipf.ContentAccessStreaming+xml");
 // test for the various protected packaged content supported by the underlying
 // video implementation
 this.dcf = this.oitf &&
 (window.oipfObjectFactory.isObjectSupported("application/oipfDrmAgent") &&
 window.oipfObjectFactory.isObjectSupported("application/vnd.oma.drm.dcf"));
 return this;
};
function initiateMS3Playback (actionToken) {
 var html5Video = detectVideoSupport();
 var oitfVideo = detectOITFSupport();
 var videoPlayer;
 var pluginElement;
 if (html5Video) {
 // Support for HTML5 <video> detected. Create the video element and source
 // child pointing it to the serviceLocation
 videoPlayer = document.createElement('video');

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 28 of 33

 // add a <source> child and off we go
 } else if (oitfVideo) {
 // Support for OITF detected. Determine if the Content Access Streaming is supported
 if (oitfVideo.cas) {
 // pass the Content Access Streaming statement URL into the MS3 plugin/player
 videoPlayer = window.oipfObjectFactory.createVideoMpegObject();
 document.getElementById('playerDiv').appendChild(videoPlayer);
 videoPlayer.data = actionToken.serviceLocation;
 // start playback
 } else {
 // Two steps using sendDRMMessage and videoPlayer.data(S-URL+C-URLTemplate)
 pluginElement = document.getElementByID("drmplugin");
 pluginElement.sendDRMMessage("application/vnd.marlin.drm.actiontoken2+xml",
 actionToken);
 // once that returns we pass the service url into the player
 videoPlayer = window.oipfObjectFactory.createVideoMpegObject();
 document.getElementById('playerDiv').appendChild(videoPlayer);
 videoPlayer.data = actionToken.serviceLocation;
 // start playback
 };
 };
};
</script>
 844

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 29 of 33

5 Annex 1: Alternative client-side MS3 architecture 845
(Informative) 846
 847
Figure 1 depicts the generic client-side architecture for MS3, in which the MS3 Client 848
is a stand-alone component and the number of components inside the tamper 849
resistant boundary is minimal. Although out-of-scope for MS3, in many practical 850
cases the interface between the Media Service and the Browser also uses TLS to 851
provide security. Consequently many browsers support TLS. In addition, on some 852
embedded clients the firmware as a whole, including the browser, is made tamper 853
resistant. In such a context the alternative client-side architecture depicted in Figure 854
8 may be considered. 855
 856

 857
Figure 8: Alternative Client-side MS3 architecture (protocol version 1.0)

 858
Also in this architecture the web page of the Media Service would pass the S-URL to 859
the MS3-plugin using for example one of the mechanisms in §4. But rather than 860
passing the S-URL on to a dedicated MS3-Client component, the implementation of 861
the MS3-plug-in, using the Browsers plug-in API (e.g. NPN_GetURL), would request 862
the Browser to resolve the S-URL. The Browser would initiate the TLS with the 863
MS3Service, request and receive the SAS and pass it on to the MS3 plug-in, which 864
would pass it on to the Media Player. 865
 866

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 30 of 33

6 Annex 2: XML Schemas 867

6.1 Marlin Broadband Action Token Schema 868
<?xml version="1.0" encoding="UTF-8"?>
<!--

 Notice

 THIS DOCUMENT IS PROVIDED "AS IS" WITH NO REPRESENTATION OR WARRANTY,
 EXPRESS OR IMPLIED, CONCERNING THE COMPLETENESS, ACCURACY, OR
 APPLICABILITY OF ANY INFORMATION CONTAINED IN THIS DOCUMENT. THE
 MARLIN DEVELOPER COMMUNITY ("MDC") ON BEHALF OF ITSELF AND ITS
 PARTICIPANTS (COLLECTIVELY, THE "PARTIES") DISCLAIM ALL LIABILITY OF
 ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, ARISING OR RESULTING FROM
 THE RELIANCE OR USE BY ANY PARTY OF THIS DOCUMENT OR ANY INFORMATION
 CONTAINED HEREIN. THE PARTIES COLLECTIVELY AND INDIVIDUALLY MAKE NO
 REPRESENTATIONS CONCERNING THE APPLICABILITY OF ANY PATENT, COPYRIGHT
 (OTHER THAN THE COPYRIGHT TO THE DOCUMENT DESCRIBED BELOW) OR OTHER
 PROPRIETARY RIGHT OF THIS DOCUMENT OR ITS USE, AND THE RECEIPT OR ANY
 USE OF THIS DOCUMENT OR ITS CONTENTS DOES NOT IN ANY WAY CREATE BY
 IMPLICATION, ESTOPPEL OR OTHERWISE, ANY LICENSE OR RIGHT TO OR UNDER
 ANY PATENT, COPYRIGHT, TRADEMARK OR TRADE SECRET RIGHTS WHICH ARE OR
 MAY BE ASSOCIATED WITH THE IDEAS, TECHNIQUES, CONCEPTS OR EXPRESSIONS
 CONTAINED HEREIN.

 Use of this document is subject to the agreement executed between you
 and the Parties, if any.

 Any copyright notices shall not be removed, varied, or denigrated in
 any manner.

 Copyright (c) 2003 - 2010 by MDC, 415-112 North Mary Avenue #383
 Sunnyvale, CA 94085, USA. All rights reserved. Third-party brands
 and names are the property of their respective owners.

 Intellectual Property

 A commercial implementation of this specification requires a license
 from the Marlin Trust Management Organization.

 Contact Information

 Feedback on this specification should be addressed to:
 editor@marlin-community.com

 Contact information for the Marlin Trust Management Organization can
 be found at:
 http://www.marlin-trust.com/

-->
<xsd:schema xmlns="urn:marlin:broadband:1-2:nemo:services:action-token"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:marlin:broadband:1-2:nemo:services:action-token"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xsd:element name="BusinessToken" type="BusinessTokenType"/>
 <xsd:simpleType name="BusinessTokenType">
 <xsd:annotation>
 <xsd:documentation>Opaque data structure containing service-specific data
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:base64Binary"/>

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 31 of 33

 </xsd:simpleType>

 <xsd:element name="ActionToken" type="ActionTokenType"/>
 <xsd:element name="ConfigurationInfo" type="ConfigurationInfoType"/>
 <xsd:element name="LicenseAcquisition" type="LicenseAcquisitionType"
 substitutionGroup="Action"/>
 <xsd:element name="NodeAcquisition" type="NodeAcquisitionType" substitutionGroup="Action"/>
 <xsd:element name="LinkAcquisition" type="RegistrationType" substitutionGroup="Action"/>
 <xsd:element name="Deregistration" type="DeregistrationType" substitutionGroup="Action"/>
 <xsd:element name="CertificationStandard" type="CertificationStandardType"/>
 <xsd:element name="Type" type="xsd:string"/>
 <xsd:element name="Uid" type="xsd:anyURI"/>

 <!-- ActionTypes -->
 <xsd:complexType name="ActionType">
 <xsd:attribute name="id" type="xsd:nonNegativeInteger" use="optional"/>
 </xsd:complexType>

 <xsd:element name="Action" type="ActionType"/>

 <!-- ActionToken -->
 <xsd:complexType name="ActionTokenType">
 <xsd:sequence>
 <xsd:element ref="ConfigurationInfo" minOccurs="0"/>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element ref="Action"/>
 </xsd:sequence>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ConfigurationInfo -->
 <xsd:complexType name="ConfigurationInfoType">
 <xsd:sequence>
 <xsd:element name="ResourceLocation" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="broadbandServiceId" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="configVersion" type="xsd:nonNegativeInteger" use="required"/>
 </xsd:complexType>

 <!-- LicenseAcquisitionType -->
 <xsd:complexType name="LicenseAcquisitionType">
 <xsd:complexContent>
 <xsd:extension base="ActionType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="Type"/>
 <xsd:element ref="Uid"/>
 </xsd:choice>
 <xsd:element ref="BusinessToken"/>
 <xsd:element ref="CertificationStandard" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- NodeAcquisitionType -->
 <xsd:complexType name="NodeAcquisitionType">
 <xsd:complexContent>
 <xsd:extension base="ActionType">
 <xsd:sequence>
 <xsd:element ref="BusinessToken"/>
 <xsd:element ref="CertificationStandard" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 32 of 33

 </xsd:complexType>

 <!-- RegistrationType which is used for LinkAcquisition and LinkAcquisition element -->
 <xsd:complexType name="RegistrationType">
 <xsd:complexContent>
 <xsd:extension base="ActionType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="Type"/>
 <xsd:element ref="Uid"/>
 </xsd:choice>
 <xsd:element ref="Uid"/>
 <xsd:element ref="BusinessToken"/>
 <xsd:element ref="CertificationStandard" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- DeRegistrationType -->
 <xsd:complexType name="DeregistrationType">
 <xsd:complexContent>
 <xsd:extension base="ActionType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="Type"/>
 <xsd:element ref="Uid"/>
 </xsd:choice>
 <xsd:element ref="Uid"/>
 <xsd:element ref="BusinessToken"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- certification standard type -->
 <xsd:complexType name="CertificationStandardType">
 <xsd:attribute name="name" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="use" type="useType" use="required"/>
 <xsd:attribute name="validity" type="xsd:duration" use="optional"/>
 </xsd:complexType>
 <xsd:simpleType name="useType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="must"/>
 <xsd:enumeration value="should"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>
 869

6.2 MS3 Action Token 870
<?xml version="1.0" encoding="UTF-8"?>
<!--

 Notice

 THIS DOCUMENT IS PROVIDED "AS IS" WITH NO REPRESENTATION OR WARRANTY,
 EXPRESS OR IMPLIED, CONCERNING THE COMPLETENESS, ACCURACY, OR
 APPLICABILITY OF ANY INFORMATION CONTAINED IN THIS DOCUMENT. THE
 MARLIN DEVELOPER COMMUNITY ("MDC") ON BEHALF OF ITSELF AND ITS
 PARTICIPANTS (COLLECTIVELY, THE "PARTIES") DISCLAIM ALL LIABILITY OF
 ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, ARISING OR RESULTING FROM
 THE RELIANCE OR USE BY ANY PARTY OF THIS DOCUMENT OR ANY INFORMATION
 CONTAINED HEREIN. THE PARTIES COLLECTIVELY AND INDIVIDUALLY MAKE NO

Copyright (c) Marlin Developer Community, 2003-2017. All Rights Reserved

Refer to Notices on page 2 for important legal information
Page 33 of 33

 REPRESENTATIONS CONCERNING THE APPLICABILITY OF ANY PATENT, COPYRIGHT
 (OTHER THAN THE COPYRIGHT TO THE DOCUMENT DESCRIBED BELOW) OR OTHER
 PROPRIETARY RIGHT OF THIS DOCUMENT OR ITS USE, AND THE RECEIPT OR ANY
 USE OF THIS DOCUMENT OR ITS CONTENTS DOES NOT IN ANY WAY CREATE BY
 IMPLICATION, ESTOPPEL OR OTHERWISE, ANY LICENSE OR RIGHT TO OR UNDER
 ANY PATENT, COPYRIGHT, TRADEMARK OR TRADE SECRET RIGHTS WHICH ARE OR
 MAY BE ASSOCIATED WITH THE IDEAS, TECHNIQUES, CONCEPTS OR EXPRESSIONS
 CONTAINED HEREIN.

 Use of this document is subject to the agreement executed between you
 and the Parties, if any.

 Any copyright notices shall not be removed, varied, or denigrated in
 any manner.

 Copyright (c) 2003 - 2010 by MDC, 415-112 North Mary Avenue #383
 Sunnyvale, CA 94085, USA. All rights reserved. Third-party brands
 and names are the property of their respective owners.

 Intellectual Property

 A commercial implementation of this specification requires a license
 from the Marlin Trust Management Organization.

 Contact Information

 Feedback on this specification should be addressed to:
 editor@marlin-community.com

 Contact information for the Marlin Trust Management Organization can
 be found at:
 http://www.marlin-trust.com/

-->
<xsd:schema xmlns="urn:marlin:ms3:1-0:services:schemas:streaming:action-token"
 targetNamespace="urn:marlin:ms3:1-0:services:schemas:streaming:action-token"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:bsa="urn:marlin:broadband:1-2:nemo:services:action-token" elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!-- imports -->
 <xsd:import namespace="urn:marlin:broadband:1-2:nemo:services:action-token"
 schemaLocation="./Broadband-services-action.xsd"/>

 <!-- Supporting Complex Types -->
 <xsd:complexType name="SASAcquisitionType">
 <xsd:complexContent>
 <xsd:extension base="bsa:ActionType">
 <xsd:sequence>
 <xsd:element name="SASLocation" type="xsd:anyURI"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>
 871

